首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We present the results of a comprehensive study in which we explored how the docking procedure affects the performance of a virtual screening approach. We used four docking engines and applied 10 scoring functions to the top-ranked docking solutions of seeded databases against six target proteins. The scores of the experimental poses were placed within the total set to assess whether the scoring function required an accurate pose to provide the appropriate rank for the seeded compounds. This method allows a direct comparison of library ranking efficacy. Our results indicate that the LigandFit/Ligscore1 and LigandFit/GOLD docking/scoring combinations, and to a lesser degree FlexX/FlexX, Glide/Ligscore1, DOCK/PMF (Tripos implementation), LigandFit1/Ligscore2 and LigandFit/PMF (Tripos implementation) were able to retrieve the highest number of actives at a 10% fraction of the database when all targets were looked upon collectively. We also show that the scoring functions rank the observed binding modes higher than the inaccurate poses provided that the experimental poses are available. This finding stresses the discriminatory ability of the scoring algorithms, when better poses are available, and suggests that the number of false positives can be lowered with conformers closer to bioactive ones.  相似文献   

2.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

3.
An increasing number of docking/scoring programs are available that use different sampling and scoring algorithms. A reliable scoring function is the crucial element of such approaches. Comparative studies are needed to evaluate their current capabilities. DOCK4 with force field and PMF scoring as well as FlexX were used to evaluate the predictive power of these docking/scoring approaches to identify the correct binding mode of 61 MMP-3 inhibitors in a crystal structure of stromelysin and also to rank them according to their different binding affinities. It was found that DOCK4/PMF scoring performs significantly better than FlexX and DOCK4/FF in both ranking ligands and predicting their binding modes. Most notably, DOCK4/PMF was the only scoring/docking approach that found a significant correlation between binding affinity and predicted score of the docked inhibitors. However, comparing only those cases where the correct binding mode was identified (scoring highest among sampled poses), FlexX showed the best `fine tuning' (lowest rmsd) in predicted binding modes. The results suggest that not so much the sampling procedure but rather the scoring function is the crucial element of a docking program.  相似文献   

4.
Here, the comparisons of performance of nine consensus scoring strategies, in which multiple scoring functions were used simultaneously to evaluate candidate structures for a protein-ligand complex, in combination with nine scoring functions (FlexX score, GOLD score, PMF score, DOCK score, ChemScore, DrugScore, PLP, ScreenScore, and X-Score), were carried out. The systematic naming of consensus scoring strategies was also proposed. Our results demonstrate that choosing the most appropriate type of consensus score is essential for model selection in computational docking; although the vote-by-number strategy was an effective selection method, the number-by-number and rank-by-number strategies were more appropriate when computational tractability was taken into account. By incorporating these consensus scores into the FlexX program, reasonable complex models can be obtained more efficiently than those selected by independent FlexX scores. These strategies might also improve the scoring of other docking programs, and more-effective structure-based drug design should result from these improvements.  相似文献   

5.
Anilinopyrazoles as CDK2 inhibitors can adopt multiple binding modes depending on the substituents at the 5-position of the pyrazole ring, based on CDK2/cyclin A crystallographic studies. Three commercially available docking programs, FlexX, GOLD, and LigandFit, were tested with 63 anilinopyrazole analogues in an attempt to reproduce the binding modes observed in the crystal structures. Each docking program gave different ligand conformations depending on the scoring or energy functions used. FlexX/drugscore, GOLD/chemscore, and LigandFit/plp were the best combinations of each docking program in reproducing the ligand conformations observed in the crystal structures. The 63 analogues were divided into two groups, type-A and type-B, depending on the substituent at the 5-position of the pyrazole ring. Although an alternate binding mode, observed in a crystal structure of one type-B compound, could not be reproduced with any of the above docking/scoring combinations, GOLD, with a template constraint based on the crystal structure coordinates, was able to reproduce the pose. As for type-A compounds, all docking conditions yielded similar poses to those observed in crystal structures. When predicting activities by scoring programs, the combination of docking with LigandFit/plp and scoring with LIGSCORE1_CFF gave the best correlation coefficient (r=0.60) between experimental pIC50 values and top-ranked rescores of 30 poses of each compound. With regard to type-A compounds, the correlation was 0.69. However, when 11 compounds, whose top-ranked rescored poses did not demonstrate the correct binding modes in reference to the crystal structure, were removed, the correlation rose to 0.75. Consequently, predicting activity on the basis of correct binding modes was found to be reliable.  相似文献   

6.
The protein/ligand docking software GOLD, which was originally developed for drug discovery, has been used in a virtual screen to identify small molecules that bind with extremely high affinities (K ≈ 107 M–1) in the cavity of a cubic coordination cage in water. A scoring function was developed using known guests as a training set and modified by introducing an additional term to take account of loss of guest flexibility on binding. This scoring function was then used in GOLD to successfully identify 15 new guests and accurately predict the binding constants. This approach provides a powerful predictive tool for virtual screening of large compound libraries to identify new guests for synthetic hosts, thereby greatly simplifying and accelerating the process of identifying guests by removing the reliance on experimental trial-and-error.  相似文献   

7.
Comparative study of several algorithms for flexible ligand docking   总被引:3,自引:0,他引:3  
We have performed a comparative assessment of several programs for flexible molecular docking: DOCK 4.0, FlexX 1.8, AutoDock 3.0, GOLD 1.2 and ICM 2.8. This was accomplished using two different studies: docking experiments on a data set of 37 protein-ligand complexes and screening a library containing 10,037 entries against 11 different proteins. The docking accuracy of the methods was judged based on the corresponding rank-one solutions. We have found that the fraction of molecules docked with acceptable accuracy is 0.47, 0.31, 0.35, 0.52 and 0.93 for, respectively, AutoDock, DOCK, FlexX, GOLD and ICM. Thus ICM provided the highest accuracy in ligand docking against these receptors. The results from the other programs are found to be less accurate and of approximately the same quality. A speed comparison demonstrated that FlexX was the fastest and AutoDock was the slowest among the tested docking programs. The database screening was performed using DOCK, FlexX and ICM. ICM was able to identify the original ligands within the top 1% of the total library in 17 cases. The corresponding number for DOCK and FlexX was 7 and 8, respectively. We have estimated that in virtual database screening, 50% of the potentially active compounds will be found among approximately 1.5% of the top scoring solutions found with ICM and among approximately 9% of the top scoring solutions produced by DOCK and FlexX.  相似文献   

8.
We are participating in the challenge of identifying active compounds for target proteins using structure-based virtual screening (SBVS). We use an in-house customized docking program, CONSENSUS-DOCK, which is a customized version of the DOCK4 program in which three scoring functions (DOCK4, FlexX and PMF) and consensus scoring have been implemented. This paper compares the docking calculation results obtained using CONSENSUS-DOCK and DOCK4, and demonstrates that CONSENSUS-DOCK produces better results than DOCK4 for major X-ray structures obtained from the Protein Data Bank (PDB).  相似文献   

9.
Ferric cytochrome P450cam from Pseudomonas putida (P450cam) in buffer solution at physiological pH 7.4 reversibly binds NO to yield the nitrosyl complex P450cam(NO). The presence of 1R-camphor affects the dynamics of NO binding to P450cam and enhances the association and dissociation rate constants significantly. In the case of the substrate-free form of P450cam, subconformers are evident and the NO binding kinetics are much slower than in the presence of the substrate. The association and dissociation processes were investigated by both laser flash photolysis and stopped-flow techniques at ambient and high pressure. Large and positive values of S and V observed for NO binding to and release from the substrate-free P450cam complex are consistent with the operation of a limiting dissociative ligand substitution mechanism, where the lability of coordinated water dominates the reactivity of the iron(III)-heme center with NO. In contrast, NO binding to P450cam in the presence of camphor displays negative activation entropy and activation volume values that support a mechanism dominated by a bond formation process. Volume profiles for the binding of NO appear to be a valuable approach to explain the differences observed for P450cam in the absence and presence of the substrate and enable the clarification of the underlying reaction mechanisms at a molecular level. Changes in spin state of the iron center during the binding/release of NO contribute significantly to the observed volume effects. The results are discussed in terms of relevance for the biological function of cytochrome P450 and in context to other investigations of the related reactions between NO and imidazole- and thiolate-ligated iron(III) hemoproteins.  相似文献   

10.
Virtual screening by molecular docking has become a widely used approach to lead discovery in the pharmaceutical industry when a high-resolution structure of the biological target of interest is available. The performance of three widely used docking programs (Glide, GOLD, and DOCK) for virtual database screening is studied when they are applied to the same protein target and ligand set. Comparisons of the docking programs and scoring functions using a large and diverse data set of pharmaceutically interesting targets and active compounds are carried out. We focus on the problem of docking and scoring flexible compounds which are sterically capable of docking into a rigid conformation of the receptor. The Glide XP methodology is shown to consistently yield enrichments superior to the two alternative methods, while GOLD outperforms DOCK on average. The study also shows that docking into multiple receptor structures can decrease the docking error in screening a diverse set of active compounds.  相似文献   

11.
Four of the most well-known, commercially available docking programs, FlexX, GOLD, GLIDE, and ICM, have been examined for their ligand-docking and virtual-screening capabilities. The relative performance of the programs in reproducing the native ligand conformation from starting SMILES strings for 164 high-resolution protein-ligand complexes is presented and compared. Applying only the native scoring functions, the latest versions of these four docking programs were also used to conduct virtual screening for 12 protein targets of therapeutic interest, involving both publicly available structures and AstraZeneca in-house structures. The capability of the four programs to correctly rank-order target-specific active compounds over alternative binders and nonbinders (decoys plus randomly selected compounds) and thereby enrich a small subset of a screening library is compared. Enrichments from the virtual-screening experiments are contrasted with those obtained with alternative 3D shape-matching and 2D similarity database-search methods.  相似文献   

12.
Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.  相似文献   

13.
Protein-ligand docking programs have been used to efficiently discover novel ligands for target proteins from large-scale compound databases. However, better scoring methods are needed. Generally, scoring functions are optimized by means of various techniques that affect their fitness for reproducing X-ray structures and protein-ligand binding affinities. However, these scoring functions do not always work well for all target proteins. A scoring function should be optimized for a target protein to enhance enrichment for structure-based virtual screening. To address this problem, we propose the supervised scoring model (SSM), which takes into account the protein-ligand binding process using docked ligand conformations with supervised learning for optimizing scoring functions against a target protein. SSM employs a rough linear correlation between binding free energy and the root mean square deviation of a native ligand for predicting binding energy. We applied SSM to the FlexX scoring function, that is, F-Score, with five different target proteins: thymidine kinase (TK), estrogen receptor (ER), acetylcholine esterase (AChE), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). For these five proteins, SSM always enhanced enrichment better than F-Score, exhibiting superior performance that was particularly remarkable for TK, AChE, and PPARgamma. We also demonstrated that SSM is especially good at enhancing enrichments of the top ranks of screened compounds, which is useful in practical drug screening.  相似文献   

14.
Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target rate depends on specificity and promiscuity in protein-ligand interactions and, to a considerable extent, on the effectiveness of the scoring function, which still is the Achilles' heel of molecular docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleoside, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets, including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering out most false positive entries. The current survey suggests that selecting a small number of targets (<20) for experimental evaluation is achievable with a pure structure-based approach.  相似文献   

15.
The docking program LigandFit/Cerius(2) has been used to perform shape-based virtual screening of databases against the aspartic protease renin, a target of determined three-dimensional structure. The protein structure was used in the induced fit binding conformation that occurs when renin is bound to the highly active renin inhibitor 1 (IC(50) = 2 nM). The scoring was calculated using several different scoring functions in order to get insight into the predictability of the magnitude of binding interactions. A database of 1000 diverse and druglike compounds, comprised of 990 members of a virtual database generated by using the iLib diverse software and 10 known active renin inhibitors, was docked flexibly and scored to determine appropriate scoring functions. All seven scoring functions used (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, LUDI) were able to retrieve at least 50% of the active compounds within the first 20% (200 molecules) of the entire test database. A hit rate of 90% in the top 1.4% resulted using the quadruple consensus scoring of LigScore2, PLP1, PLP2, and JAIN. Additionally, a focused database was created with the iLib diverse software and used for the same procedure as the test database. Docking and scoring of the 990 focused compounds and the 10 known actives were performed. A hit rate of 100% in the top 8.4% resulted with use of the triple consensus scoring of PLP1, PLP2, and PMF. As expected, a ranking of the known active compounds within the focused database compared to the test database was observed. Adequate virtual screening conditions were derived empirically. They can be used for proximate docking and scoring application of compounds with putative renin inhibiting potency.  相似文献   

16.
Fourteen popular scoring functions, i.e., X-Score, DrugScore, five scoring functions in the Sybyl software (D-Score, PMF-Score, G-Score, ChemScore, and F-Score), four scoring functions in the Cerius2 software (LigScore, PLP, PMF, and LUDI), two scoring functions in the GOLD program (GoldScore and ChemScore), and HINT, were tested on the refined set of the PDBbind database, a set of 800 diverse protein-ligand complexes with high-resolution crystal structures and experimentally determined Ki or Kd values. The focus of our study was to assess the ability of these scoring functions to predict binding affinities based on the experimentally determined high-resolution crystal structures of proteins in complex with their ligands. The quantitative correlation between the binding scores produced by each scoring function and the known binding constants of the 800 complexes was computed. X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::PLP provided better correlations than the other scoring functions with standard deviations of 1.8-2.0 log units. These four scoring functions were also found to be robust enough to carry out computation directly on unaltered crystal structures. To examine how well scoring functions predict the binding affinities for ligands bound to the same target protein, the performance of these 14 scoring functions were evaluated on three subsets of protein-ligand complexes from the test set: HIV-1 protease complexes (82 entries), trypsin complexes (45 entries), and carbonic anhydrase II complexes (40 entries). Although the results for the HIV-1 protease subset are less than desirable, several scoring functions are able to satisfactorily predict the binding affinities for the trypsin and the carbonic anhydrase II subsets with standard deviation as low as 1.0 log unit (corresponding to 1.3-1.4 kcal/mol at room temperature). Our results demonstrate the strengths as well as the weaknesses of current scoring functions for binding affinity prediction.  相似文献   

17.
Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein–ligand complementarities. Interestingly, while protein–ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state‐of‐the‐art protein‐ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
In this work we report on a novel scoring function that is based on the LUDI model and focuses on the prediction of binding affinities. AIScore extends the original FlexX scoring function using a chemically diverse set of hydrogen-bonded interactions derived from extensive quantum chemical ab initio calculations. Furthermore, we introduce an algorithmic extension for the treatment of multifurcated hydrogen bonds (XFurcate). Charged and resonance-assisted hydrogen bond energies and hydrophobic interactions as well as a scaling factor for implicit solvation were fitted to experimental data. To this end, we assembled a set of 101 protein-ligand complexes with known experimental binding affinities. Tightly bound water molecules in the active site were considered to be an integral part of the binding pocket. Compared to the original FlexX scoring function, AIScore significantly improves the prediction of the binding free energies of the complexes in their native crystal structures. In combination with XFurcate, AIScore yields a Pearson correlation coefficient of R P = 0.87 on the training set. In a validation run on the PDBbind test set we achieved an R P value of 0.46 for 799 attractively scored complexes, compared to a value of R P = 0.17 and 739 bound complexes obtained with the FlexX original scoring function. The redocking capability of AIScore, on the other hand, does not fully reach the good performance of the original FlexX scoring function. This finding suggests that AIScore should rather be used for postscoring in combination with the standard FlexX incremental ligand construction scheme.  相似文献   

19.
Scoring forms a major obstacle to the success of any docking study. In general, fast scoring functions perform poorly when used to determine the relative affinity of ligands for their receptors. In this study, the objective was not to rank compounds with confidence but simply to identify a scoring method which could provide a 4-fold hit enrichment in a screening sample over random selection. To this end, LigandFit, a fast shape matching docking algorithm, was used to dock a variety of known inhibitors of type 4 phosphodiesterase (PDE4B) into its binding site determined crystallographically for a series of pyrazolopyridine inhibitors. The success of identifying good poses with this technique was explored through RMSD comparisons with 19 known inhibitors for which crystallographic structures were available. The effectiveness of five scoring functions (PMF, JAIN, PLP2, LigScore2, and DockScore) was then evaluated through consideration of the success in enriching the top ranked fractions of nine artificial databases, constructed by seeding 1980 inactive ligands (pIC50 < 5) with 20 randomly selected inhibitors (pIC50 > 6.5). PMF and JAIN showed high average enrichment factors (greater than 4 times) in the top 5-10% of the ranked databases. Rank-based consensus scoring was then investigated, and the rational combination of 3 scoring functions resulted in more robust scoring schemes with (cScore)-DPmJ (consensus score of DockScore, PMF, and JAIN) and (cScore)-PPmJ (PLP2, PMF, and JAIN) yielding particularly good results. These cScores are believed to be of greater general application. Finally, the analysis of the behavior of the scoring functions across different chemotypes uncovered the inherent bias of the docking and scoring toward compounds in the same structural family as that employed for the crystal structure, suggesting the need to use multiple versions of the binding site for more successful virtual screening strategies.  相似文献   

20.
Multiple oxidants have been implicated as playing a role in cytochrome P450-mediated oxidations. Herein, we report results on N-dealkylation, one of the most facile reactions mediated by P450 enzymes. We have employed the N-oxides of a series of para-substituted 13C2H2-labeled N,N-dimethylanilines to function as both substrates and surrogate oxygen atom donors for P450cam and P4502E1. Kinetic isotope effect profiles obtained using the N-oxide system were found to closely match the profiles produced using the complete NAD(P)H/NAD(P)-P450 reductase/O2 system. The results are consistent with oxidation occurring solely through an iron-oxene species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号