首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sensitivity and precision of headspace solid-phase micro extraction (HS-SPME) at an analyte solution temperature (T as) of +35 °C and a fiber temperature (T fiber) of +5 °C were compared with those for HS-SPME at T as and T fiber of −20 °C for analysis of the volatile organic compounds benzene, 1,1,1-trichloroethane, trichloroethylene, toluene, o-xylene, ethylbenzene, m/p-xylene, and tetrachloroethylene in water samples. The effect of simultaneous fiber cooling and analyte solution freezing during extraction was studied. The compounds are of different hydrophobicity, with octanol/water partition coefficients (Kow) ranging from 126 and 2511. During a first set of experiments the polydimethylsiloxane (PDMS) SPME fiber was cooled to +5 °C with simultaneous heating of the aqueous analyte solution to +35 °C. During a second set of experiments, both SPME fiber holder and samples were placed in a deep freezer maintained at −20 °C for a total extraction time of 30 min. After approximately 2 min the analyte solution in the vial began to freeze from the side inwards and from the bottom upwards. After approximately 30 min the solution was completely frozen. Analysis of VOC was performed by coupling HS-SPME to gas chromatography-mass spectrometry (GC-MS). In general, i.e. except for tetrachloroethylene, the sensitivity of HS-SPME increased with increasing compound hydrophobicity at both analyte solution and fiber temperatures. At T as of +35 °C and T fiber of +5 °C detection limits of HS-SPME were 0.5 μg L−1 for benzene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, 0.125 μg L−1 for toluene, and 0.025 μg L−1 for ethylbenzene, m/p-xylene, and o-xylene. In the experiments with T as and T fiber of −20 °C, detection limits were reduced for compounds of low hydrophobicity (Kow<501), for example benzene, toluene, 1,1,1-trichloroethane, and trichloroethylene. In the concentration range 0.5–62.5 μg L−1, the sensitivity of HS-SPME was enhanced by a factor of approximately two for all compounds by performing the extraction at −20 °C. A possible explanation is that freezing of the water sample results in higher concentration of the target compounds in the residual liquid phase and gas phase (freezing-out), combined with enhanced adsorption of the compounds by the cooled fiber. The precision of HS-SPME, expressed as the relative standard deviation and the linearity of the regression lines, is increased for more hydrophobic compounds (Kow>501) by simultaneous direct fiber cooling and freezing of analyte solution. Background contamination during analysis is reduced significantly by avoiding the use of organic solvents.  相似文献   

2.
Abstract

The gas chromatographic method proposed by us for simple and accurate measurement of isothermal phase equilibria has been applied to the binary mixtures formed by alkylbenzenes amongst themselves. Results on the binary mixtures of: benzene - toluene, toluene + o-xylene, toluene + p-xylene, toluene + ethylbenzene, ethylbenzene + o-xylene and ethylbenzene + p-xylene are presented in this paper. The present measurements on benzene + toluene system at 40°C are in good agreement with the isothermal phase equilibrium data available in the literature.  相似文献   

3.
A piece of copper wire coated with a polypropylene hollow fiber membrane was used as an SPME fiber and its efficiency for extraction of BTEX compounds from the headspace of water samples prior to GC analysis was evaluated. Under optimum extraction conditions, limits of detection for benzene, toluene, ethylbenzene, m-p-xylene, and o-xylene were found to be 0.11, 0.22, 0.26, 0.37, and 0.26 μg L?1, respectively. Low detection limits, wide linear dynamic ranges, good reproducibility (RSD% <4), high fiber capacity and higher mechanical durability are some of the most important advantages of the new fiber.  相似文献   

4.
L. Nardi 《Chromatographia》2007,65(1-2):51-57
Benzene, toluene, ethylbenzene and o-, m-, and p-xylenes (BTEX), were extracted from aqueous samples by capillary extraction (CEx), a manual form of in-tube microextraction inherently compatible with capillary GC, and analyzed by HRGC analysis in order to quantify the post-extraction losses of these volatile organic compounds. Accuracy of the VOC determination by CEx–HRGC is dependent on these losses. The used active extraction devices were fused silica open-tubular capillaries of 0.25 mm i.d., with lengths in the range of 3–15 cm, coated with a 0.25 μm film of PTE-5 (5% phenyl methylpolysiloxane) stationary phase. The losses decreased remarkably when the extractor lengths were increased. In particular, the losses were modest or negligible for capillary extractors of usual length, though the losses increased with rising solute volatility and ‘lag time’ (the length of time required to connect in-line the laden capillary extractors with the HRGC column). BTEX losses between 2% (benzene) and 0.5% (o-xylene) resulted from CEx conducted under very usual conditions, independently from sample concentration. The short-term precision of the CE–HRGC experiments, expressed as relative standard deviation, was 0.8–4.9% (n = 5).  相似文献   

5.
Anodized TiO2 nanotube fibers using in-headspace solid-phase microextraction (SPME) with gas chromatography–mass spectrometry (GC–MS) have been exploited as an analytical method for volatile organic compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX) detection. The factors of anodizing time and annealing temperature for TiO2 nanotube production are studied and the adsorption factors (time, ionic strength, and temperature) and desorption factors (time and temperature) for BTEX analysis are optimized. The limit of detections (LODs) for benzene, toluene, ethylbenzene o-xylene, and m, p-xylene are 0.5, 0.1, 1.0, 1.0, and 2.0 μg L−1, respectively. The linear ranges for BTEX (0.5–15,000 μg L−1) and satisfactory linearity (R2 ≥ 0.9954) are obtained. This method is successfully applied in real samples with the recoveries ranging from 92% to 97%. TiO2 nanotube fiber is a promising technique for BTEX analysis.  相似文献   

6.
A method of solventless extraction of volatile organic compounds from aqueous samples has been developed and validated. A new arrangement in which the internal volume of a needle capillary adsorption trap is completely filled with Porapak Q, as adsorbent material, and wet alumina, as a source of desorptive water vapor flow, is presented. The device has been used for head-space sampling of benzene, toluene, ethylbenzene, and xylenes (BTEX) from water samples and compared with solid-phase microextraction. Under the same sampling conditions the analytical characteristics of the device for the BTEX compounds are better than those of solid-phase microextraction. Limits of detection and quantification are below 0.5 μ g L−1.  相似文献   

7.
An analytical methodology based on a field-effect transistor detector using carbon nanotubes (NTFET) coupled to a gas chromatograph has been developed for the speciation of the following aromatic compounds: benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene (BTEX). This methodology combines the proven separation capability of gas chromatography (GC) with the potential for detection of a NTFET. The developed analyzer shows a high and stable analytical response upon repeated analysis of BTEX during 4 weeks, with detection limit less than 4 μg/L. The GC–NTFET system also shows a great suitability for actual monitoring of indoor atmospheres and no significant difference was observed between the results obtained by the developed analyzer and a more classical analytical methodology, namely gas chromatography–flame ionization detection (GC–FID).  相似文献   

8.
A carbon-coated fiber for solid-phase microextraction (SPME) has been prepared from powdered activated carbon (PAC) and a fused-silica fiber. Scanning electron microscopy of the coating revealed the carbon particles were uniformly distributed on the surface of the fiber substrate. Efficient extraction of BTEX (benzene, toluene, ethylbenzene, p-xylene, and o-xylene) and halocarbons (chloroform, trichloroethylene, and carbon tetrachloride), with short extraction and desorption times, was achieved by use of the coated fiber. The maximum working temperature of the coated fiber was 300 °C and the lifetime was over 140 desorption operations at 260 °C. Limits of quantification (LOQ) of the SPME method for the eight analytes ranged from 0.01 to 0.94 μg L−1, and relative standard deviations (RSD) were below 7.2% (n=6). Recoveries were 87.9–113.4% when the method was applied to the analysis of BTEX and the halocarbons in real aqueous samples. An erratum to this article is available at .  相似文献   

9.
Zhang  Shuai  Zhao  Tianbo  Xu  Xin  Wang  Haiwang  Miao  Ce 《Chromatographia》2010,71(11):1131-1135

A novel method was developed and validated for determination of benzene, toluene, p-xylene, m-xylene, o-xylene (BTEX) in a solid–liquid mixing matrix. It makes use of solid phase extraction and thermal desorption (SPE-TD), followed by gas chromatographic flame ionization detector analysis (GC-FID). The trapped BTEX can be measured directly after thermal desorption onto the stainless-steel packed chromatographic column. The effect of tailing area of solvent was removed with the use of SPE-TD technique, and the result shows good reproducibility with very little matrix dependency. The study also supports that the lifetime of the Tenax adsorption tube could be extended over 150 desorption operation at 200 °C, which enables performing excellent stability and reproducibility of BTEX analysis.

  相似文献   

10.
A new solid phase microextraction (SPME) fibre using carbon nanotubes as fibre coating incorporated into a groove of a stainless steel rod is suggested. It is mechanically stable and exhibits relatively high thermal stability (up to 280 °C). The coating showed especially good extraction efficiency for aromatic hydrocarbons. The extraction properties of the fibre to benzene, toluene, ethylbenzene and o-xylene were examined using both direct and headspace SPME modes coupled to gas chromatography-flame ionization detection. The parameters affecting the extraction efficiency (extraction temperature and time, salt addition, desorption temperature and time) were investigated and quality parameters were measured under the optimized conditions. For both headspace and direct SPME the calibration graphs were linear up to 100 mg L−1 (R 2 > 0.996) and detection limits ranged from 0.09 to 0.39 μg L−1. The repeatabilities were 5.9–13.3%. The proposed coating was applied for aromatic hydrocarbons determination in petrol station waste waters.  相似文献   

11.
Summary To assess individual exposure to monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes-BTEX) in biological fluids, a GC-MS method was developed. Headspace sampling of BTEX was by solidphase microextraction (SPME) with a 75 μm Carboxenpolydimethylsiloxane (PDMS) fiber. Linearity was established for concentrations up to 50 μg L−1. Detection limits, calculated both in human blood and urine, ranged 5–10 ng L−1. Repeatability was in the range 6.5–9.2% for all compounds. The method was applied to the evaluation of the internal dose of BTEX in a group of cyclists running for 2 h within city routes. Benzene and toluene in blood, and toluene and xylenes in urine significantly increased after exercise as compared to prerun values, such changes being consistent with airborne concentrations. The combination of SPME with GC-MS seems to represent an appropriate analytical approach to detect changes in the concentration of monoaromatic hydrocarbons in biological media resulting from exposure to environmental pollution.  相似文献   

12.
A reference material for the biological monitoring of occupational exposure to toluene, benzene and phenol was prepared. O-cresol and hippuric acid (metabolites of toluene) are used for the biological monitoring of occupational exposure to toluene. Phenol, a metabolite of benzene, is used for the biological monitoring of exposure to benzene, but phenol can of course also be used as an indicator of exposure to phenol as well. The reference material (RM) used for the determination of these metabolites was prepared by freeze-drying pooled urine samples obtained from healthy persons occupationally exposed to toluene and those taking part in an inhalation experiment. Tests for homogeneity and stability were performed by determining urine concentrations of o-cresol, hippuric acid, creatinine and phenol. To investigate the stability of the RM, the urinary concentrations of o-cresol and phenol were monitored for eighteen months using GC and HPLC, while those of hippuric acid and creatinine were followed for five and six years, respectively, using HPLC. Analysis of variance showed that the concentrations did not change. The certified concentration values (and their uncertainties) of the substances in this reference material (phenol concentration c=6.46±0.58 mg l−1; o-cresol concentration c=1.17±0.15 mg l−1; hippuric acid concentration c=1328±30 mg l−1; creatinine concentration c=0.82±0.10 g l−1) were evaluated via the interactive statistical programme IPECA.  相似文献   

13.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

14.
A concentrator was designed for solid-phase microextraction of aromatic compounds (benzene, toluene, ethylbenzene, o-xylene) from water samples. The concentrator was used as an attachment to a water vapor mobile phase chromatograph with a detection limit (compounds <1 μg/l).  相似文献   

15.
In this study, the monocomponent adsorption of benzene, toluene and o-xylene (BTX) compounds, as model contaminants present in the petrochemical wastewaters, was investigated using three types of adsorbents: activated carbon (Carbon CD 500), a polymeric resin (MN-202) and a modified clay (Claytone-40). Langmuir and Freundlich models were able to fit well the equilibrium experimental data. The BTX adsorption capacity increased in the following order: Claytone-40 < CD 500 < MN-202. The maximum uptake capacity of MN-202, given by the Langmuir fitting parameter, for benzene, toluene and o-xylene was 0.8 ± 0.1, 0.70 ± 0.08 and 0.63 ± 0.06 mmol/g at 26 °C. Desorption kinetics for polymeric resin with 50 % methanol solution were fast being able to reuse the resin in consecutive adsorption/desorption cycles without loss of sorption capacity. The adsorptive behaviour at batch system was modelled using a mass transfer kinetic model, considering that the sorption rate is controlled by a linear driving force model, which successfully predicts benzene, toluene and o-xylene concentration profiles, with homogeneous diffusivity coefficients, D h , between 3.8 × 10?10 and 3.6 × 10?9 cm2/s. In general, benzene diffuses faster than toluene and o-xylene, which is in agreement with molecular diffusivity in water.  相似文献   

16.
In this study the influence of aromatic dopant benzene on the sensitivity of GC-APPI-DMS to gasoline related aromatic compounds was investigated. This influence was investigated on example of four gasolin related fingerprints (toluene, ethylbenzene, o-xylene, and 1,2,4-trimethylbenzene), which were found in high relative abundance in the water-soluble gasoline fraction. The analysis of calibration curves slopes demonstrats that the GC-APPI-DMS sensitivity to gasoline fingerprints can be improved by up to seven times when benzene concentration in nitrogen carrier gas is less than 10 ppmv/v. The estimated detection limits (S/N?=?3) for the analyzed in this study compounds were found to be within the range of 33–105 μg L?1 at benzene concentration in the carrier gas of 2.27 ppmv/v (10 μL injection volume). These limits of detection may be reduced (at the cost of lower resolution) using the larger injection volumes. For example, increase of injection volume to 100 μL at benzene concentration in the carrier gas of 2.27 ppmv/v leads to reduction of LOD values for toluene, ethylbenzene, and o-xylene to 11.1, 13.3, and 5.3 μg L?1, respectively.  相似文献   

17.
A simple and fast method has been developed for the determination of benzene, toluene and the mixture of ethylbenzene and xylene isomers (BTEX) in soils. Samples were introduced in 10 mL standard glass vials of a headspace (HS) autosampler together with 150 μL of 2,6,10,14-tetramethylpentadecane, heated at 90 °C for 10 min and introduced in the mass spectrometer by using a transfer line heated at 250 °C as interface. The volatile fraction of samples was directly introduced into the source of the mass spectrometer which was scanned from m/z 75 to 110. A partial least squares (PLS) multivariate calibration approach based on a classical 33 calibration model was build with mixtures of benzene, toluene and o-xylene in 2,6,10,14-tetramethylpentadecane for BTEX determination. Results obtained for BTEX analysis by HS-MS in different types of soil samples were comparables to those obtained by the reference HS-GC-MS procedure. So, the developed procedure allowed a fast identification and prediction of BTEX present in the samples without a prior chromatographic separation.  相似文献   

18.
Vapour pressures of butyl acetate?+?benzene or toluene or o- or m- or p-xylene were measured by static method at 298.15?±?0.01?K over the entire composition range. The activity coefficients and excess molar Gibb's free energies of mixing (G E) for these binary mixtures were calculated by fitting vapour pressure data to the Redlich–Kister equation using Barker's method of minimizing the residual pressure. The G E values for the binary mixtures containing benzene are positive; while these are negative for toluene, ortho, meta and para xylene system over the whole composition range. The G E values of an equimolar mixture for these systems vary in the order: benzene?>?m-xylene?>?o-xylene?>?p-xylene?>?toluene  相似文献   

19.
Meconium is the earliest stool of newborns, and is a complex matrix that reflects the degree of exposure of the fetus to xenobiotics. To investigate fetal exposure to volatile organic compounds, an analytical method was developed to identify and quantify BTEX (benzene, toluene, ethylbenzene, and o,m,p-xylene) and two chlorinated solvents (trichloroethylene and tetrachloroethylene) in meconium. Headspace-solid-phase microextraction coupled with gas chromatography–mass spectrometry was selected because it is simple, sensitive, can be automated, and requires no extensive sample preparation. Several extraction variables were optimized (fiber type, incubation time, temperature of fiber, and use of salt). Because meconium is a complex matrix, quantification by SPME was considered carefully because of potential interference, for example competitive adsorption. Calibration in water was compared with calibration in meconium using external and internal methods (with isotope-labeled compounds). In meconium, limits of quantification were determined to be in the range 0.064–0.096 ng g?1 for the investigated compounds. All target compounds were determined in “real-case” meconium samples.  相似文献   

20.
A new method for the simultaneous determination of 12 volatile organic compounds (trans-1,2-dichloroethene, 1,1,1-trichloroethane, benzene, 1,2-dichloroethane, trichloroethene, toluene, 1,1,2-trichloroethane, tetrachloroethene, ethylbenzene, m-, p-, o-xylene) in water samples by headspace solid phase microextraction (HS–SPME)–gas chromatography mass spectrometry (GC–MS) was described, using a 100?µm PDMS (polydimethylsiloxane) coated fibre. The response surface methodology was used to optimise the effect of the extraction time and temperature, as well as the influence of the salt addition in the extraction process. Optimal conditions were extraction time and temperature of 30?min and ?20°C, respectively, and NaCl concentration of 4?mol?L?1. The detection limits were in the range of 1.1?×?10?3–2.3?µg?L?1 for the 12 volatile organic compounds (VOCs). Global uncertainties were in the range of 4–68%, when concentrations decrease from 250?µg?L?1 down to the limits of quantification. The method proved adequate to detect VOCs in six river samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号