首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
员美娟  郁伯铭  郑伟  袁洁 《物理学报》2011,60(2):24703-024703
研究了非牛顿流体中的卡森流体在多孔介质中的流动特性.基于服从分形分布的弯曲毛细管束模型,运用分形几何理论推导出了该流体在多孔介质中流动的流量、流速、启动压力梯度和有效渗透率的分形解析解.模型中的每一个参数都有明确的物理意义,它将卡森流体在多孔介质中的流动特性与多孔介质的微结构参数有机联系起来.文中给出了卡森流体的流速、启动压力梯度和有效渗透率随着各影响因素的变化趋势,并进行了讨论.所得分形模型可以更深刻地理解卡森流体在多孔介质中流动的内在物理机理. 关键词: 多孔介质 卡森流体 分形  相似文献   

2.
员美娟  郑伟  李云宝  李钰 《物理学报》2012,61(16):164701-164701
运用分形理论给出了非牛顿流体中的赫切尔-巴尔克莱流体在单毛细管中的渗流分形模型. 此模型将赫切尔-巴尔克莱流体的流量、流速、启动压力梯度和有效渗 透率与流体的流变特性、毛细管的结构参数联系起来, 并且不含经验常数, 每个参数都具有明确的物理意义, 所得分形模型更能体现出赫切尔-巴尔克莱流体流动的内在物理机理.  相似文献   

3.
肖波齐 《中国物理 B》2013,22(1):14402-014402
Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid.  相似文献   

4.
变形双重介质分形油藏非达西流动分析   总被引:3,自引:1,他引:2  
考虑与实际生产相符的介质的双重特性和分形特征,并考虑介质的变形,引入双重分形介质渗透率模数,建立应力敏感地层双重分形介质系统的流动方程.采用Douglas-Jones预估-校正法获得无限大地层定产量生产时变形双重分形介质模型的数值解和无限大地层定压生产时分形介质双孔模型的数值解,作出了典型的压力曲线图版.  相似文献   

5.
A Particle Resistance Model for Flow through Porous Media   总被引:1,自引:0,他引:1       下载免费PDF全文
A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere. The proposed model is expressed as a function of porosity, fluid property, particle size, fluid velocity (or Reynolds number) and fractal characters D f of particles in porous media. The model predictions are in good agreement with the experimental data. The validity of the proposed model is thus verified.  相似文献   

6.
纳米流体对流换热机理分析   总被引:2,自引:0,他引:2       下载免费PDF全文
肖波齐  范金土  蒋国平  陈玲霞 《物理学报》2012,61(15):154401-154401
考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热, 基于纳米颗粒在纳米流体中遵循分形分布, 本文得到纳米流体对流换热的机理模型. 本解析模型没有增加新的经验常数, 从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、 纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数. 对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较, 模型预测的结果与实验结果相吻合. 所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.  相似文献   

7.
An analytical expression for the streaming current in fractal porous media is developed based on the capillary model and the fractal theory for porous media. The proposed fractal model is expressed as a function of the space charge density at the solid–liquid interface, the fluid flow rate, the Debye–Huckel parameter, the minimum and maximum pore/capillary radii and fractal dimensions for porous media. The results are compared with available experimental data and good agreement is found between them. In addition, factors influencing the streaming current in porous media are also analyzed.  相似文献   

8.
裂缝-孔隙型双重介质油藏渗吸机理的分形分析   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡建超  郭士礼  游利军  胡祥云 《物理学报》2013,62(1):14701-014701
低渗透油藏常常伴随裂缝发育,形成裂缝-基质双重介质.自发渗吸是低渗裂缝性水驱油藏的重要采油机理,有顺向和逆向两种渗吸方式.基于基质孔隙结构的分形特征,引入分形几何对裂缝性双重介质渗吸机理的判据进行了改进,建立了渗吸机理的分形判据模型,并进一步推导了结构常数的解析表达式.结果表明,渗吸机理的判别参数是基质孔隙度、高度、孔隙分形维数、流动迂曲度、最大孔隙直径、界面张力、油水密度差以及接触角的函数.改进后的判据模型与现有结果一致.最后绘制了判别渗吸机理的图版,为利用表面活性剂提高低渗透油藏采收率提供理论依据.  相似文献   

9.
王敏  申玉清  陈震宇  徐鹏 《计算物理》2021,38(5):623-630
根据多孔介质微观结构的分形尺度标度特征,采用蒙特卡罗方法分别重构随机多孔介质的微观颗粒和孔隙结构,并基于分形毛管束模型研究多尺度多孔介质的气体渗流特性,建立多孔介质微观结构和宏观渗流特性的定量关系。结果表明:分形蒙特卡罗重构的多孔介质微细结构接近真实介质结构,气体渗流特性的计算结果与格子玻尔兹曼模拟数据较为吻合; 多孔介质气体渗透率随着克努森数的增加而增大,孔隙分形维数对于气体渗流的微尺度效应具有显著影响,而迂曲度分形维数对于表观渗透率和固有渗透率的比值影响可以忽略。提出的分形蒙特卡罗方法具有收敛速度快且计算误差与维数无关的优点,有利于深入理解多尺度多孔介质的渗流机理。  相似文献   

10.
Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.  相似文献   

11.
以Warren-Root模型为基础,引入分形参数和压缩系数,考虑压力对具有分形特征的渗透率和孔隙度的影响,建立变形双重介质分形气藏渗流数学模型.应用高收敛和高精度的有限元法求解这类含有第二类边界条件的数学模型.利用压力曲线,压力导数,参数对压力的影响率详细分析了部分参数对压力的影响及在变形双重介质分形气藏渗流数学模型中所具有的独特意义.  相似文献   

12.
肖波齐  杨毅  许晓赋 《中国物理 B》2014,23(2):26601-026601
A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.  相似文献   

13.
分形介质的传热与传质分析(综述)   总被引:9,自引:0,他引:9  
本文论述了分形介质的分形理论和数学基础,并简要综述了用分形理论和方法研究分形介质的传热与传质特性(如多孔介质的渗透率、热导率以及池核态沸腾换热)方面目前所取得的研究进展,最后扼要展望了用分形理论和方法进一步研究分形介质的传热与传质的可能的若干课题和方向。  相似文献   

14.
The thermodynamic properties of an atomically rough surface with a fractal structure are analyzed. Expressions for the Gibbs energy and the Gibbs adsorption are derived using the mathematical apparatus of fractional integro-differentiation. A relation between the exponent of the fractional derivative and the fractal dimension of the surface is determined within the proposed model. The results of the calculations are compared with the theoretical and experimental data available in the literature.  相似文献   

15.
The domain structure in strained garnet ferrite films and its behavior in an external magnetic field are studied using the Faraday effect. Based on the experimental results, a model of magnetization reversal in thin polycrystalline layers is proposed that describes the process of remagnetization as the development of fractal clusters. The model proposed is verified using a computer simulation of magnetization reversal.  相似文献   

16.
Qian Xu  Jianchao Cai 《Physics letters. A》2009,373(22):1978-1982
The effective dielectric constant of porous ultra low-k dielectrics is simulated by applying the fractal geometry and Monte Carlo technique in this work. Based on the fractal character of pore size distribution in porous media, the probability models for pore diameter and for effective dielectric constant are derived. The proposed model for the effective dielectric constant is expressed as a function of the dielectric coefficient of base medium and the volume fractions of pores and base medium, fractal dimension for pores, the pore size, as well as random number. The Monte Carlo simulations combined with the fractal geometry are performed. The predictions by the present simulations are shown in good accord with the available experimental data. The proposed technique may have the potential in analyzing other properties such as electrical conductivity and thermal conductivity in porous ultra low-k dielectrics.  相似文献   

17.
We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.  相似文献   

18.
The paper analyzes experimental data obtained on physical and mechanical properties of nanostructured particle-reinforced composites with elastomer matrices and nano- and microsized carbon-containing particles by scanning probe microscopy and nanoindentation with specialized 3D computer processing. The nano-effects observed in the elastomer matrices are described using the fractal approach. A fractal model of nanoparticle aggregation in a polymer matrix is proposed. Phase interactions in the nanostructured polymer materials are described and fractal relations that predict the reinforcing effect of this type of media are presented. It is shown that interphase regions in the nanostructured composites are the same reinforcing elements as a nanofiller for the medium. It is found that reinforcement of elastomer composites by nanosized particles is a true nano-effect.  相似文献   

19.
A fractal-percolation model describing the stability of foam is studied. In this model, a correspondence is established between the system of branched channels and a fractal tree. In the proposed model, the foam breaks down by a scale-invariant load-transfer mechanism. A formula is obtained for calculating the height of the nth level of the fractal tree. The critical height of a foam column is determined. The results are compared with experimental data. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 12, 900–903 (25 June 1999)  相似文献   

20.
Nanofluids, a class of solid–liquid suspensions, have received an increasing attention and studied intensively because of their anomalously high thermal conductivites at low nanoparticle concentration. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle’s sizes and the effective thermal conductivity model are derived, in which the effect of the microconvection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles, and the temperature, as well as random number. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号