首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Under a mild regularity assumption, we derive an exact formula for the Fréchet coderivative and some estimates for the Mordukhovich coderivative of the normal cone mappings of perturbed polyhedra in reflexive Banach spaces. Our focus point is a positive linear independence condition, which is a relaxed form of the linear independence condition employed recently by Henrion et al. (2010) [1], and Nam (2010) [3]. The formulae obtained allow us to get new results on solution stability of affine variational inequalities under linear perturbations. Thus, our paper develops some aspects of the work of Henrion et al. (2010) [1] Nam (2010) [3] Qui (in press) [12] and Yao and Yen (2009) [6] and [7].  相似文献   

2.
The famous Newton-Kantorovich hypothesis (Kantorovich and Akilov, 1982 [3], Argyros, 2007 [2], Argyros and Hilout, 2009 [7]) has been used for a long time as a sufficient condition for the convergence of Newton’s method to a solution of an equation in connection with the Lipschitz continuity of the Fréchet-derivative of the operator involved. Here, using Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we show that the Newton-Kantorovich hypothesis can be weakened, under the same information. Moreover, the error bounds are tighter than the corresponding ones given by the dominating Newton-Kantorovich theorem (Argyros, 1998 [1]; [2] and [7]; Ezquerro and Hernández, 2002 [11]; [3]; Proinov 2009, 2010 [16] and [17]).Numerical examples including a nonlinear integral equation of Chandrasekhar-type (Chandrasekhar, 1960 [9]), as well as a two boundary value problem with a Green’s kernel (Argyros, 2007 [2]) are also provided in this study.  相似文献   

3.
We provide a new semilocal convergence analysis for generating an inexact Newton method converging to a solution of a nonlinear equation in a Banach space setting. Our analysis is based on our idea of recurrent functions. Our results are compared favorably to earlier ones by others and us (Argyros (2007, 2009) [5] and [6], Argyros and Hilout (2009) [7], Guo (2007) [15], Shen and Li (2008) [18], Li and Shen (2008) [19], Shen and Li (2009) [20]). Numerical examples are provided to show that our results apply, but not earlier ones [15], [18], [19] and [20].  相似文献   

4.
This note is motivated from some recent papers treating the problem of the existence of a solution for abstract differential equations with fractional derivatives. We show that the existence results in [Agarwal et al. (2009) [1], Belmekki and Benchohra (2010) [2], Darwish et al. (2009) [3], Hu et al. (2009) [4], Mophou and N’Guérékata (2009) [6] and [7], Mophou (2010) [8] and [9], Muslim (2009) [10], Pandey et al. (2009) [11], Rashid and El-Qaderi (2009) [12] and Tai and Wang (2009) [13]] are incorrect since the considered variation of constant formulas is not appropriate. In this note, we also consider a different approach to treat a general class of abstract fractional differential equations.  相似文献   

5.
In this paper, on the basis of some recent works of Fan, Jiang and Jia, we establish a representation theorem in the space of processes for generators of BSDEs with continuous linear-growth generators, which generalizes the corresponding results in Fan (2006, 2007) [10] and [11] and Fan and Hu (2008) [9].  相似文献   

6.
In this paper, we introduce a condition on multivalued mappings which is a multivalued version of condition (Cλ) defined by Garcia-Falset et al. (2011) [3]. It is shown here that some of the classical fixed point theorems for multivalued nonexpansive mappings can be extended to mappings satisfying this condition. Our results generalize the results in Lim (1974), Lami Dozo (1973), Kirk and Massa (1990), Garcia-Falset et al. (2011), Dhompongsa et al. (2009) and Abkar and Eslamian (2010) [4], [5], [6], [3], [7] and [8] and many others.  相似文献   

7.
This paper establishes an exact formula for the Fréchet coderivative and some estimates for the Mordukhovich coderivative of the linearly perturbed normal cone mappings in reflexive Banach spaces. In comparison with Nam (2010) [5], Qui (in press) [8], Qui (2011) [7], Trang (2010) [9], the major advantage of our investigation is that here neither the linear independence condition nor the positively linear independence condition are used. Thus, no assumption on the normal vectors of the active constraints at the point in question is needed. Some aspects of the preceding results (Henrion, Mordukhovich and Nam (2010) [3], Nam (2009) [5], Qui (2011) [7], Yao and Yen (2009) [10], Yao and Yen (2009) [11]) are developed.  相似文献   

8.
Let X be a complete CAT(0) space, T be a generalized multivalued nonexpansive mapping, and t be a single valued quasi-nonexpansive mapping. Under the assumption that T and t commute weakly, we shall prove the existence of a common fixed point for them. In this way, we extend and improve a number of recent results obtained by Shahzad (2009) [7] and [12], Shahzad and Markin (2008) [6], and Dhompongsa et al. (2005) [5].  相似文献   

9.
A finite difference method for a time-dependent convection-diffusion problem in one space dimension is constructed using a Shishkin mesh. In two recent papers (Clavero et al. (2005) [2] and Mukherjee and Natesan (2009) [3]), this method has been shown to be convergent, uniformly in the small diffusion parameter, using somewhat elaborate analytical techniques and under a certain mesh restriction. In the present paper, a much simpler argument is used to prove a higher order of convergence (uniformly in the diffusion parameter) than in [2] and [3] and under a slightly less restrictive condition on the mesh.  相似文献   

10.
11.
The semi-local convergence of a Newton-type method used to solve nonlinear equations in a Banach space is studied. We also give, as two important applications, convergence analyses of two classes of two-point Newton-type methods including a method mentioned in [5] and the midpoint method studied in [1], [2] and [12]. Recently, interest has been shown in such methods [3] and [4].  相似文献   

12.
We show the equivalence of admissibility conditions proposed by Wilcox and Yu (in press) [11] and by Rui and Xu (2009) [9] for the parameters of cyclotomic BMW algebras.  相似文献   

13.
Based on the very recent work by Censor and Segal (2009) [1], and inspired by Xu (2006) [9], Zhao and Yang (2005) [10], and Bauschke and Combettes (2001) [2], we introduce and analyze an algorithm for solving the split common fixed-point problem for the wide class of quasi-nonexpansive operators in Hilbert spaces. Our results improve and develop previously discussed feasibility problems and related algorithms.  相似文献   

14.
15.
We define a logic D capable of expressing dependence of a variable on designated variables only. Thus D has similar goals to the Henkin quantifiers of [4] and the independence friendly logic of [6] that it much resembles. The logic D achieves these goals by realizing the desired dependence declarations of variables on the level of atomic formulas. By [3] and [17], ability to limit dependence relations between variables leads to existential second order expressive power. Our D avoids some difficulties arising in the original independence friendly logic from coupling the dependence declarations with existential quantifiers. As is the case with independence friendly logic, truth of D is definable inside D. We give such a definition for D in the spirit of [11] and [2] and [1].  相似文献   

16.
We present a new semilocal convergence analysis for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis is based on the weaker center-Lipschitz concept instead of the stronger Lipschitz condition which has been ubiquitously employed in other studies such as Amat et al. (2004)  [2], Bosarge and Falb (1969)  [9], Dennis (1971)  [10], Ezquerro et al. (2010)  [11], Hernández et al. (2005, 2000)   and , Kantorovich and Akilov (1982)  [14], Laasonen (1969)  [15], Ortega and Rheinboldt (1970)  [16], Parida and Gupta (2007)  [17], Potra (1982, 1984–1985, 1985)  ,  and , Proinov (2009, 2010)   and , Schmidt (1978) [23], Wolfe (1978)  [24] and Yamamoto (1987)  [25] for computing the inverses of the linear operators. We also provide lower and upper bounds on the limit point of the majorizing sequences for the Secant method. Under the same computational cost, our error analysis is tighter than that proposed in earlier studies. Numerical examples illustrating the theoretical results are also given in this study.  相似文献   

17.
In this paper, we introduce a new general iterative method for finding a common element of the set of solutions of a mixed equilibrium problem (MEP), the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a ξ-inverse-strongly monotone mapping in Hilbert spaces. Furthermore, we establish the strong convergence theorem for the iterative sequence generated by the proposed iterative algorithm under some suitable conditions, which solves some optimization problems. Our results extend and improve the recent results of Yao et al. [Y. Yao, M.A. Noor, S. Zainab, Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal. Appl. 354 (2009) 319-329; Y. Yao, M. A. Noor, Y.C. Liou, On iterative methods for equilibrium problems, Nonlinear Anal. 70 (1) (2009) 479-509] and many others.  相似文献   

18.
The classical existence-and-uniqueness theorem of the solution to a stochastic differential delay equation (SDDE) requires the local Lipschitz condition and the linear growth condition (see e.g. [11], [12] and [20]). The numerical solutions under these conditions have also been discussed intensively (see e.g. [4], [10], [13], [16], [17], [18], [21], [22] and [24]). Recently, Mao and Rassias [14] and [15] established the generalized Khasminskii-type existence-and-uniqueness theorems for SDDEs, where the linear growth condition is no longer imposed. These generalized Khasminskii-type theorems cover a wide class of highly nonlinear SDDEs but these nonlinear SDDEs do not have explicit solutions, whence numerical solutions are required in practice. However, there is so far little numerical theory on SDDEs under these generalized Khasminskii-type conditions. The key aim of this paper is to close this gap.  相似文献   

19.
Extending a previous result of Tang [1] we prove the uniqueness of positive radial solutions of Δpu+f(u)=0, subject to Dirichlet boundary conditions on an annulus in Rn with 2<pn, under suitable hypotheses on the nonlinearity f. This argument also provides an alternative proof for the uniqueness of positive solutions of the same problem in a finite ball (see [9]), in the complement of a ball or in the whole space Rn (see [10], [3] and [11]).  相似文献   

20.
We introduce the new idea of recurrent functions to provide a semilocal convergence analysis for an inexact Newton-type method, using outer inverses. It turns out that our sufficient convergence conditions are weaker than in earlier studies in many interesting cases (Argyros, 2004 [5] and [6], Argyros, 2007 [7], Dennis, 1971 [14], Deuflhard and Heindl, 1979 [15], Gutiérrez, 1997 [16], Gutiérrez et al., 1995 [17], Häubler, 1986 [18], Huang, 1993 [19], Kantorovich and Akilov, 1982 [20], Nashed and Chen, 1993 [21], Potra, 1982 [22], Potra, 1985 [23]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号