首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce and study new classes of Bregman nonexpansive operators in reflexive Banach spaces. These classes of operators are associated with the Bregman distance induced by a convex function. In particular, we characterize sunny right quasi-Bregman nonexpansive retractions, and as a consequence, we show that the fixed point set of any right quasi-Bregman nonexpansive operator is a sunny right quasi-Bregman nonexpansive retract of the ambient Banach space.  相似文献   

2.
In this paper, we introduce two iterative sequences for finding a common element of the set of fixed points of a relatively nonexpansive mapping and the set of solutions of an equilibrium problem in a Banach space. Then we study the strong and weak convergence of the sequences.  相似文献   

3.
Let C be a nonempty, closed and convex subset of a uniformly convex and smooth Banach space and let {Tn} be a family of mappings of C into itself such that the set of all common fixed points of {Tn} is nonempty. We consider a sequence {xn} generated by the hybrid method by generalized projection in mathematical programming. We give conditions on {Tn} under which {xn} converges strongly to a common fixed point of {Tn} and generalize the results given in [12], [14], [13] and [11].  相似文献   

4.
Weak and strong convergence theorems are proved in real Hilbert spaces for a new class of nonspreading-type mappings more general than the class studied recently in Kurokawa and Takahashi [Y. Kurokawa, W. Takahashi, Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010) 1562-1568]. We explored an auxiliary mapping in our theorems and proofs and this also yielded a strong convergence theorem of Halpern’s type for our class of mappings and hence resolved in the affirmative an open problem posed by Kurokawa and Takahashi in their final remark for the case where the mapping T is averaged.  相似文献   

5.
In this paper, we introduce a composite iterative scheme by viscosity approximation method for finding a zero of an accretive operator in Banach spaces. Then, we establish strong convergence theorems for the composite iterative scheme. The main theorems improve and generalize the recent corresponding results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Qin and Su [X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415-424] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631-643] as well as Aoyama et al. [K. Aoyama, Y Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007) 2350-2360], Benavides et al. [T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248-249 (2003) 62-71], Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and m-accretive operators, Fixed Point Theory and Appl. 2006 (2006) 1-10] and Kamimura and Takahashi [S. Kamimura, W. Takahashi, Approximation solutions of maximal monotone operators in Hilberts spaces, J. Approx. Theory 106 (2000) 226-240].  相似文献   

6.
Viscosity approximation methods for a family of finite nonexpansive mappings are established in Banach spaces. The main theorems extend the main results of Moudafi [Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55] and Xu [Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291] to the case of finite mappings. Our results also improve and unify the corresponding results of Bauschke [The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150–159], Browder [Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archiv. Ration. Mech. Anal. 24 (1967) 82–90], Cho et al. [Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2) (2005) 27–34], Ha and Jung [Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990) 330–339], Halpern [Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957–961], Jung [Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509–520], Jung et al. [Iterative schemes with some control conditions for a family of finite nonexpansive mappings in Banach space, Fixed Point Theory Appl. 2005 (2) (2005) 125–135], Jung and Kim [Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 34 (1) (1997) 93–102], Lions [Approximation de points fixes de contractions, C.R. Acad. Sci. Ser. A-B, Paris 284 (1977) 1357–1359], O’Hara et al. [Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417–1426], Reich [Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292], Shioji and Takahashi [Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (12) (1997) 3641–3645], Takahashi and Ueda [On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553], Wittmann [Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992) 486–491], Xu [Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2) (2002) 240–256], and Zhou et al. [Strong convergence theorems on an iterative method for a family nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., in press] among others.  相似文献   

7.
A recent trend in the iterative methods for constructing fixed points of nonlinear mappings is to use the viscosity approximation technique. The advantage of this technique is that one can find a particular solution to the associated problems, and in most cases this particular solution solves some variational inequality. In this paper, we try to extend this technique to find a particular common fixed point of a finite family of asymptotically nonexpansive mappings in a Banach space which is reflexive and has a weakly continuous duality map. Both implicit and explicit viscosity approximation schemes are proposed and their strong convergence to a solution to a variational inequality is proved.  相似文献   

8.
In this paper, we obtain an existence theorem for single-valued monotone operators in a reflexive Banach space. Using this result, we prove a fixed point theorem for nonexpansive mappings in a Hilbert space and an existence theorem for maximal monotone operators in a Banach space. Received: 3 July 2006 Revised: 15 January 2007  相似文献   

9.
10.
In this work, we present some new versions of fixed point theorems for nonexpansive maps and 1-set contractions defined on closed, convex, not necessarily bounded subsets of Banach spaces. Our proofs rely on a compactness result for an approximate fixed point set. The Kuratowski measure of noncompactness is used throughout. To illustrate the results obtained, some applications to Banach algebras and Hammerstein integral equations are provided.  相似文献   

11.
In an infinite-dimensional Hilbert space, the normal Mann’s iteration algorithm has only weak convergence, in general, even for nonexpansive mappings. In order to get a strong convergence result, we modify the normal Mann’s iterative process for an infinite family of nonexpansive mappings in the framework of Banach spaces. Our results improve and extend the recent results announced by many others.  相似文献   

12.
In this paper, we prove strong convergence theorems to a zero of monotone mapping and a fixed point of relatively weak nonexpansive mapping. Moreover, strong convergence theorems to a point which is a fixed point of relatively weak nonexpansive mapping and a solution of a certain variational problem are proved under appropriate conditions.  相似文献   

13.
In this paper, a general system of nonlinear variational inequality problem in Banach spaces was considered, which includes some existing problems as special cases. For solving this nonlinear variational inequality problem, we construct two methods which were inspired and motivated by Korpelevich’s extragradient method. Furthermore, we prove that the suggested algorithms converge strongly to some solutions of the studied variational inequality.  相似文献   

14.
Let H be a real Hilbert space. Suppose that T is a nonexpansive mapping on H with a fixed point, f is a contraction on H with coefficient 0<α<1, and F:HH is a k-Lipschitzian and η-strongly monotone operator with k>0,η>0. Let . We proved that the sequence {xn} generated by the iterative method xn+1=αnγf(xn)+(IμαnF)Txn converges strongly to a fixed point , which solves the variational inequality , for xFix(T).  相似文献   

15.
16.
The purpose of this paper is to prove by using a new hybrid method a strong convergence theorem for finding a common element of the set of solutions for a generalized equilibrium problem, the set of solutions for a variational inequality problem and the set of common fixed points for a pair of relatively nonexpansive mappings in a Banach space. As applications, we utilize our results to obtain some new results for finding a solution of an equilibrium problem, a fixed point problem and a common zero-point problem for maximal monotone mappings in Banach spaces.  相似文献   

17.
The purpose of this paper is to introduce hybrid projection algorithms for finding a common element of the set of common fixed points of two quasi-??-nonexpansive mappings and the set of solutions of an equilibrium problem in the framework of Banach spaces. Our results improve and extend the corresponding results announced by many others.  相似文献   

18.
Let EE be a reflexive Banach space with a uniformly Gâteaux differentiable norm, let KK be a nonempty closed convex subset of EE, and let T:K?ET:K?E be a continuous pseudocontraction which satisfies the weakly inward condition. For f:K?Kf:K?K any contraction map on KK, and every nonempty closed convex and bounded subset of KK having the fixed point property for nonexpansive self-mappings, it is shown that the path x→xt,t∈[0,1)xxt,t[0,1), in KK, defined by xt=tTxt+(1−t)f(xt)xt=tTxt+(1t)f(xt) is continuous and strongly converges to the fixed point of TT, which is the unique solution of some co-variational inequality. If, in particular, TT is a Lipschitz pseudocontractive self-mapping of KK, it is also shown, under appropriate conditions on the sequences of real numbers {αn},{μn}{αn},{μn}, that the iteration process: z1∈Kz1K, zn+1=μn(αnTzn+(1−αn)zn)+(1−μn)f(zn),n∈Nzn+1=μn(αnTzn+(1αn)zn)+(1μn)f(zn),nN, strongly converges to the fixed point of TT, which is the unique solution of the same co-variational inequality. Our results propose viscosity approximation methods for Lipschitz pseudocontractions.  相似文献   

19.
20.
Strong convergence theorems are obtained for a finite family of asymptotically nonexpansive mappings and semigroups by the modified Mann method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号