首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于密度泛函理论,从头计算了C间隙和替位氧掺杂立方结构BaTiO3的电子结构和磁学性质.结果表明C掺杂BaTiO3在自旋极化状态下的总能量比自旋非极化状态下的总能量小,说明C掺杂BaTiO3的基态具有铁磁性.从态密度和自旋电子密度分布可知,C位于BaTiO3间隙的磁性机理和过渡金属掺杂半导体产生磁性的机理类似:C替位掺杂BaTiO3体系磁性源于未配对的C2p电子.  相似文献   

2.
The geometry and electronic structure of C-doped BNNTs are investigated using the hybrid Heyd–Scuseria–Ernzerhof. The van Hove singularity (vHs) peaks split in density of states (DOS) The impurity states decrease the bandgap.
  1. Download : Download full-size image
  相似文献   

3.
The ab initio VASP–PAW method with the generalized gradient approximation (GGA) has been applied to predict the electronic and magnetic properties of wurtzite-like beryllium oxide (BeO) doped with all 3d metals. Adding of 3d metal ions into BeO transforms the initial non-magnetic insulator BeO into series of magnetic and non-magnetic materials with various functional properties.  相似文献   

4.
C mono-doped and C–In co-doped ZnO are investigated by the first-principles calculations. It is found that the C mono-doped ZnO is p-type with hole carriers locating nearby valence band maximum. Furthermore, a shallower C acceptor energy level appears in the band gap after incorporating In into C-doped ZnO system. Meantime, compared with C mono-doped ZnO, C–In co-doped ZnO has a lower formation energy, correspondingly a higher chemical stability, and thus to enhance the incorporation efficiency of C. These results suggest that C–In co-doping method provided an efficient technique for realizing p-type ZnO.  相似文献   

5.
王步升  刘永 《物理学报》2016,65(6):66101-066101
采用基于密度泛函理论的赝势投影缀加波方法, 对六种典型的二元晶体结构Rocksalt (RS), Cesiun-chloride (CC), Zinc-blende (ZB), Wurtzite (WZ), Iron-silicide (IS) 和Nickel-Arsenide (NA)的MnTe进行了计算研究. 通过比较六种结构的结合能, 确定了MnTe的基态结构是反铁磁的NA结构. 研究了这六种结构MnTe的电子结构、磁性, 并用Birch-Murnaghan状态方程拟合求得了各相结构的体弹性模量和相变压. 电子态密度表明, RS, CC和IS结构的MnTe为反铁磁导体, ZB, WZ和NA结构的MnTe均为反铁磁半导体.  相似文献   

6.
The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA)+U and generalized gradient approximation (GGA)+U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA+U approach, most of our calculated results are in good agreement with the experimental data. Therefore, the results obtained by the GGA+U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable.  相似文献   

7.
By means of the first-principles full potential linearized augmented plane-wave method within the local density approximation for the exchange-correlation functional, we have investigated the magnetism and electronic structure of Mn- and V-doped zinc blende ZnTe. Total energy calculations show that, for high doping concentration (12.5%), ZnTe:Mn has an antiferromagnetic ground state while the ferromagnetic state is more favorable than the antiferromagnetic state for ZnTe:V. Furthermore, ZnTe with a low doping of Mn (6.25%) has a stable ferromagnetic ground state, which is in agreement with the experimental results. The calculated magnetic moment of ZnTe doped with Mn (V) mainly originates from transition metal Mn (V) atom with a little contribution from Te atom due to the hybridization between Mn (V) 3d and Te 5p electrons. Electronic structure indicates that Mn-doped ZnTe is a semiconductor, but V-doped ZnTe shows a half-metallic characteristic. We also discuss the difference between electronic and magnetic properties for ZnTe doped with 12.5% and 6.25% Mn.  相似文献   

8.
Thermoelectric properties of La or Ce-doped Bi2Te3 alloys were systematically investigated by ab initio calculations of electronic structures and Boltzmann transport equations. The Seebeck coefficient of p-type LaBi7Te12 and La2Bi6Te12 was larger than that of Bi2Te3, because La doping increased the effective mass of carriers. On the other hand, the electrical conductivity of LaBi7Te12 and La2Bi6Te12 decreased, which caused a reduction of power factor of these La-doped Bi2Te3 alloys in comparison with Bi2Te3. The influence of Ce doping on the band structure and thermoelectric properties of Bi2Te3 was similar to that of La doping. The theoretical calculation provided an insight into the transport properties of La or Ce-doped Bi2Te3-based thermoelectric materials.  相似文献   

9.
In this paper, we use first-principles calculations to study the correlation between mechanical behaviors and electronic structures of Al-Cu intermetallic compounds. We find that in general, the ductility of intermetallic compounds decreases with the increase in Cu content, while the corresponding work function increases but densities of states decrease. Moreover, homogeneous and symmetrical or small anisotropic charge distributions correspond to small brittleness. The present study therefore suggests that the primary origin of brittleness in intermetallic compounds can be well related to their electronic structures.  相似文献   

10.
The structural, electronic and elastic properties of potassium hexatitanate (K2Ti6O13) whisker were investigated using first-principles calculations. The calculated cell parameters of K2Ti6O13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (−61.1535 eV/atom) and cohesive energy (−137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K2Ti6O13 crystal, the TiO bonding interactions are stronger than that of KO, while no apparent KTi bonding interactions can be observed. The structural stability of K2Ti6O13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K2Ti6O13 is a high stiffness and brittle material with small anisotropy in shear and compression.  相似文献   

11.
钛酸铅(PTO)因具有优异的铁电、压电特性及光学性质而备受关注.但B、N掺杂对顺电相PTO电子结构和光学性质的影响还不明确,因此,利用第一性原理对立方PTO开展准确的性质预测尤为必要.本文采用广义梯度近似的PBE泛函(GGA-PBE)和杂化泛函(HSE06)研究了B、N替位掺杂(BO、NO)和O空位(VO)对PTO的基态性质、电子结构和光学性质的影响.研究表明:贫氧态的PTO比富氧态更容易形成杂质缺陷,且NO缺陷最难形成.当BO、NO缺陷存在时,PTO的价带顶和导带底向低能量方向移动,在两者之间出现杂质能级,使其导电性能提高且含BO的PTO为间接带隙半导体,而含NO的PTO为直接带隙半导体. NO体系在波长大约为230 nm处有最大吸收峰,该峰主要源于O 2p和Ti 3d之间的电子跃迁,且NO体系对可见光的吸收能力最强,有望提高PTO的光催化能力.  相似文献   

12.
Electronic structure, Born effective charges, and spontaneous polarization of multiferroic single crystal BiMn2O5 have been investigated in the framework of density functional theory. The relative stability of the ground state and the origin of multiferroicity for magnetism and ferroelectricity are addressed. The results reveal that the stability of antiferromagnetic (AFM) state is better than the ferromagnetic (FM) and ferrimagnetic configurations. The Born effective charge tensors (Z?) have been calculated for this compound using a Berry-phase approach, compared to their nominal ionic values, the Z* of Mn atoms show anomalous difference. By investigating the electric structure of BiMn2O5, there exists obviously hybridization between Bi 6s and O 2p states, our calculations indicate that the 6s2 lone pair on the formally trivalent Bi ion plays an important role in inducing the ferroelectric distortion.  相似文献   

13.
We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits half-metallic ferromagnetism with a stable ferromagnetic ground state. The calculated magnetic moment of the 32-atom supercell containing one C dopant is 2.00 μ B , and the C dopant contributes most. The calculated low formation energy suggests that C-doped zinc-blende ZnO is energetically stable. The hole-mediated double exchange mechanism can be used to explain the ferromagnetism in C-doped zinc-blende ZnO.  相似文献   

14.
The electronic structure and magnetic properties for GdGa have been studied from a first-principles density functional calculation. The energy band structure has been calculated in a local spin density approximation (LSDA), plus Hubbard U approach (LSDA+U). For Gd atoms, seven spin up 4f bands are fully occupied and situated at the bottom of Ga 4s states, while the spin down 4f hole levels are completely unoccupied and well above the Fermi level (Ef). The p- and d-like states dominate at Ef. The calculated magnetic moment is 7.37μB per formula unit (f.u.) and is not sensitive to the change of the unit cell volume. The effective exchange parameters, J0, decrease from 2.6 to 0.9 mRy with increasing lattice volume from 35.7 to 55.3 Å3/f.u., resulting in a pressure induced enhancement of the Curie temperature (TC). With the experimental lattice constants, the calculated mean field TC is 187 K, in good agreement with the experimental value (TCexp.=183 K).  相似文献   

15.
通过运用基于密度泛函理论的第一性原理计算方法结合广义梯度近似对压力下CaN_2的结构稳定性和电子结构进行了理论研究.对结构稳定性的研究表明,ZnCl_2型结构是CaN_2在环境压力下最稳定的结构,而实验上观察到的CaC_2-I型结构是CaN_2高压下(8.7 GPa)的稳定性结构.在50 GPa的压力范围内,CaN_2将发生从ZnCl_2型结构到ThC_2型结构再到CaC_2-I型结构的两次压致结构相变,其相变压力分别为0.81 GPa和8.77 GPa.而对电子结构的研究表明ZnCl_2型、ThC_2型和CaC_2-I型三种结构的CaN_2都表现出了金属特征,三种结构CaN_2当中Ca-N键的离子-共价性特征和N原子间的N=N双键特征得到了确认.  相似文献   

16.
Electronic structures, elastic properties and thermal stabilities of Mg17Al12, Mg2Si and Al2Y have been determined from first-principle calculations. The calculated heats of formation and cohesive energies show that Al2Y has the strongest alloying ability and structural stability. The brittle behavior and structural stability mechanism is also explained through the electronic structures of these intermetallic compounds. The elastic constants are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson ratio value are derived, the brittleness and plasticity of these phases are discussed. Gibbs free energy, Debye temperature and heat capacity are calculated and discussed.  相似文献   

17.
First-principles calculations have been performed on NaAlH4 using the generalized gradient approximation pseudopotential method. The predicted β-NaAlH4 (α-LiAlH4-type) structure is energetically more favorable than α-NaAlH4 for pressures over 15.9 GPa, which is apparently correlated with the experimental transition pressure 14 GPa. This transition is identified as first-order in nature with volume contractions of 1.8%. There is no pressure-induced softening behavior from our calculated phonon dispersion curves near the phase transition pressure. Based on the Mulliken population analysis, the β-NaAlH4 structure is expected to be the most promising candidate for hydrogen storage.  相似文献   

18.
In this paper, the electronic structure and stability of the intrinsic, B-, N-, Si-, S-doped graphene are studied based on first-principles calculations of density functional theory. Firstly, the intrinsic, B-, N-, Si-, S-doped graphene structures are optimized, and then the forming energy, band structure, density of states, differential charge density are analyzed and calculated. The results show that B- and Si-doped systems are p-type doping, while N is n-type doping. By comparing the forming energy, it is found that N atoms are more easily doped in graphene. In addition, for B-, N-, Si-doped systems, it is found that the doping atoms will open the band gap, leading to a great change in the band structure of the doping system. Finally, we systematically study the optical properties of the different configurations. By comparison, it is found that the order of light sensitivity in the visible region is as follows: S-doped> Si-doped> pure > B-doped > N-doped. Our results will provide theoretical guidance for the stability and electronic structure of non-metallic doped graphene.  相似文献   

19.
Metals with strong correlations are a major challenge for realistic electronic structure calculations. The complexity of the systems under consideration precludes a direct fully microscopic treatment by means of the theoretical and computational methods available at present. The present paper analyzes the applicability and restrictions of common approximation schemes by comparing their predictions for a model pertinent to heavy fermion metals to the exact solution. The criteria chosen for the assessment are the density distribution in the ground state as well as the energy scale for low-lying excitations.  相似文献   

20.
The large Stokes shifts of II-VI semiconductor quantum dots favour their application in bioimaging. Using a cluster model, we revealed that ZnSe clusters have large Stokes shifts at small cluster sizes by means of density functional theory calculations. Both the optical absorption and emission wavelengths of the clusters are size-dependent. While some trends were noted for the absorption spectra, the emission wavelength varies in a complicated way, leading to large fluctuations in their Stokes shifts with cluster size. These fluctuations, as well as their variations with solvent, were rationalised in terms of changes in their geometrical and electronic structures from size to size, and from ground- to excited-state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号