首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we first study convergence of nonstationary multisplitting methods associated with a multisplitting which is obtained from the ILU factorizations for solving a linear system whose coefficient matrix is a large sparse H-matrix. We next study a parallel implementation of the relaxed nonstationary two-stage multisplitting method (called Algorithm 2 in this paper) using ILU factorizations as inner splittings and an application of Algorithm 2 to parallel preconditioner of Krylov subspace methods. Lastly, we provide parallel performance results of both Algorithm 2 using ILU factorizations as inner splittings and the BiCGSTAB with a parallel preconditioner which is derived from Algorithm 2 on the IBM p690 supercomputer.  相似文献   

2.
In this paper, we study the convergence of both relaxed multisplitting method and nonstationary two-stage multisplitting method associated with a multisplitting which is obtained from the ILU factorizations for solving a linear system whose coefficient matrix is anH-matrix. Also, parallel performance results of nonstaionary two-stage multisplitting method using ILU factorizations as inner splittings on the IBM p690 supercomputer are provided to analyze theoretical results.  相似文献   

3.
In this article, we generalize modulus‐based synchronous multisplitting methods to horizontal linear complementarity problems. In particular, first we define the methods of our concern and prove their convergence under suitable smoothness assumptions. Particular attention is devoted also to modulus‐based multisplitting accelerated overrelaxation methods. Then, as multisplitting methods are well‐suited for parallel computations, we analyze the parallel behavior of the proposed procedures. In particular, we do so by solving various test problems by a parallel implementation of our multisplitting methods. In this context, we carry out parallel computations on GPU with CUDA.  相似文献   

4.
In accordance with the principle of using sufficiently the delayed information, and by making use of the nonlinear multisplitting and the nonlinear relaxation techniques, we present in this paper a class of asynchronous parallel nonlinear multisplitting accelerated overrelaxation (AOR) methods for solving the large sparse nonlinear complementarity problems on the high-speed MIMD multiprocessor systems. These new methods, in particular, include the so-called asynchronous parallel nonlinear multisplitting AOR-Newton method, the asynchronous parallel nonlinear multisplitting AOR-chord method and the asynchronous parallel nonlinear multisplitting AOR-Steffensen method. Under suitable constraints on the nonlinear multisplitting and the relaxation parameters, we establish the local convergence theory of this class of new methods when the Jacobi matrix of the involved nonlinear mapping at the solution point of the nonlinear complementarity problem is an H-matrix.  相似文献   

5.
Convergence properties of the nonstationary multisplitting two-stage iteration methods for solving large sparse system of linear equations are further studied when the coefficient matrices are hermitian positive definite matrices.  相似文献   

6.
We study the numerical behaviours of the relaxed asynchronous multisplitting methods for the linear complementarity problems by solving some typical problems from practical applications on a real multiprocessor system. Numerical results show that the parallel multisplitting relaxation methods always perform much better than the corresponding sequential alternatives, and that the asynchronous multisplitting relaxation methods often outperform their corresponding synchronous counterparts. Moreover, the two-sweep relaxed multisplitting methods have better convergence properties than their corresponding one-sweep relaxed ones in the sense that they have larger convergence domains and faster convergence speeds. Hence, the asynchronous multisplitting unsymmetric relaxation iterations should be the methods of choice for solving the large sparse linear complementarity problems in the parallel computing environments.  相似文献   

7.
1. IntroductionWe consider the linear complementarity problem LCP(M,q): Find a z E m such thatwhere M = (mij) E boxs and q ~ (qi) 6 m are given real matriX and vector, respectively.This problem axises in various scientific computing areas such as the Nash equilibritun poillt ofa bimatrir game (e.g., Cottle and Dantzig[4] and Lelnke[12j) and the free boundary problems offluid mechedcs (e.g., Cryer[8]). There have been a lot of researches on the approximate solutionof the linear complemeat…  相似文献   

8.
In this paper we construct some parallel relaxed multisplitting methods for solving consistent symmetric positive semidefinite linear systems, based on modified diagonally compensated reduction and incomplete factorizations. The semiconvergence of the parallel multisplitting method, relaxed multisplitting method and relaxed two‐stage multisplitting method are discussed. The results generalize some well‐known results for the nonsingular linear systems to the singular systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high-speed multiprocessor systems is set up. This class of methods not only includes all the existing relaxation methods for the linear complementarity problems ,but also yields a lot of novel ones in the sense of multisplittlng. We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H-metrix with positive diagonal elements.  相似文献   

10.
为了在并行和向量机上求解对称正定性方程且Ax=b,两组多分裂方法被考虑,中,把Galligain和Ruggiero的两级算术平均方法推广到两级多分裂方法并给出了一些合适的内分裂例子,同时讨论了所引起的两级多分裂方法的收敛性。  相似文献   

11.
Parallel nonlinear multisplitting methods   总被引:1,自引:0,他引:1  
Summary Linear multisplitting methods are known as parallel iterative methods for solving a linear systemAx=b. We extend the idea of multisplittings to the problem of solving a nonlinear system of equationsF(x)=0. Our nonlinear multisplittings are based on several nonlinear splittings of the functionF. In a parallel computing environment, each processor would have to calculate the exact solution of an individual nonlinear system belonging to his nonlinear multisplitting and these solutions are combined to yield the next iterate. Although the individual systems are usually much less involved than the original system, the exact solutions will in general not be available. Therefore, we consider important variants where the exact solutions of the individual systems are approximated by some standard method such as Newton's method. Several methods proposed in literature may be regarded as special nonlinear multisplitting methods. As an application of our systematic approach we present a local convergence analysis of the nonlinear multisplitting methods and their variants. One result is that the local convergence of these methods is determined by an induced linear multisplitting of the Jacobian ofF.Dedicated to the memory of Peter Henrici  相似文献   

12.
ONMONOTONECONVERGENCEOFNONLINEARMULTISPLITTINGRELAXATIONMETHODS¥WANGDEREN;BAIZHONGZHI(DepazatmentofMathematics,ShsllghaiUnive...  相似文献   

13.
The matrix multisplitting iteration method is an effective tool for solving large sparse linear complementarity problems. However, at each iteration step we have to solve a sequence of linear complementarity sub-problems exactly. In this paper, we present a two-stage multisplitting iteration method, in which the modulus-based matrix splitting iteration and its relaxed variants are employed as inner iterations to solve the linear complementarity sub-problems approximately. The convergence theorems of these two-stage multisplitting iteration methods are established. Numerical experiments show that the two-stage multisplitting relaxation methods are superior to the matrix multisplitting iteration methods in computing time, and can achieve a satisfactory parallel efficiency.  相似文献   

14.
In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, we construct modulus-based synchronous two-stage multisplitting iteration methods based on two-stage multisplittings of the system matrices. These iteration methods include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, SOR and AOR of the modulus type as special cases. We establish the convergence theory of these modulus-based synchronous two-stage multisplitting iteration methods and their relaxed variants when the system matrix is an H ?+?-matrix. Numerical results show that in terms of computing time the modulus-based synchronous two-stage multisplitting relaxation methods are more efficient than the modulus-based synchronous multisplitting relaxation methods in actual implementations.  相似文献   

15.
In this paper we propose some parallel multisplitting methods for solving consistent symmetric positive semidefinite linear systems, based on modified diagonally compensated reduction. The semiconvergence of the parallel multisplitting method is discussed. The results here generalize some known results for the nonsingular linear systems to the singular systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, we introduce two new asynchronous multisplitting methods for solving the system of weakly nonlinear equations Ax = G(x) in which A is an n × n real matrix and G(x) = (g 1(x), g 2(x), . . . , g n (x)) T is a P-bounded mapping. First, by generalized accelerated overrelaxation (GAOR) technique, we introduce the asynchronous parallel multisplitting GAOR method (including the synchronous parallel multisplitting AOR method as a special case) for solving the system of weakly nonlinear equations. Second, asynchronous parallel multisplitting method based on symmetric successive overrelaxation (SSOR) multisplitting is introduced, which is called asynchronous parallel multisplitting SSOR method. Then under suitable conditions, we establish the convergence of the two introduced methods. The given results contain synchronous multisplitting iterations as a special case.  相似文献   

17.
In this paper, we propose the parallel multisplitting TOR method, for solving a large nonsingular systems of linear equations Ax = b. These new methods are a generalization and an improvement of the relaxed parallel multisplitting method (Formmer and Mager, 1989) and parallel multisplitting AOR Algorithm (Wang Deren, 1991). The convergence theorem of this new algorithm is established under the condition that the coefficient matrix A of linear systems is an H-matrix. Some results also yield new convergence theorem for TOR method.  相似文献   

18.
The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when is a monotone matrix using a weak nonnegative multisplitting of the second type and when is a symmetric positive definite matrix using a -regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix is symmetric positive definite and the multisplittings are -regular, the schemes are also convergent.

  相似文献   


19.
In this paper we present three modified parallel multisplitting iterative methods for solving non-Hermitian positive definite systems Ax?=?b. The first is a direct generalization of the standard parallel multisplitting iterative method for solving this class of systems. The other two are the iterative methods obtained by optimizing the weighting matrices based on the sparsity of the coefficient matrix A. In our multisplitting there is only one that is required to be convergent (in a standard method all the splittings must be convergent), which not only decreases the difficulty of constructing the multisplitting of the coefficient matrix A, but also releases the constraints to the weighting matrices (unlike the standard methods, they are not necessarily be known or given in advance). We then prove the convergence and derive the convergent rates of the algorithms by making use of the standard quadratic optimization technique. Finally, our numerical computations indicate that the methods derived are feasible and efficient.  相似文献   

20.
Summary. This paper investigates the comparisons of asymptotic rates of convergence of two iteration matrices. On the basis of nonnegative matrix theory, comparisons between two nonnegative splittings and between two parallel multisplitting methods are derived. When the coefficient matrix A is Hermitian positive (semi)definite, comparison theorems about two P-regular splittings and two parallel multisplitting methods are proved. Received April 4, 1998 / Revised version received October 18, 1999 / Published online November 15, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号