首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a modified SQP method with nonmonotone line search technique is presented based on the modified quadratic subproblem proposed in Zhou (1997) and the nonmonotone line search technique. This algorithm starts from an arbitrary initial point, adjusts penalty parameter automatically and can overcome the Maratos effect. What is more, the subproblem is feasible at each iterate point. The global and local superlinear convergence properties are obtained under certain conditions.  相似文献   

2.
An improved SQP algorithm for inequality constrained optimization   总被引:5,自引:0,他引:5  
In this paper, the feasible type SQP method is improved. A new algorithm is proposed to solve nonlinear inequality constrained problem, in which a new modified method is presented to decrease the computational complexity. It is required to solve only one QP subproblem with only a subset of the constraints estimated as active per single iteration. Moreover, a direction is generated to avoid the Maratos effect by solving a system of linear equations. The theoretical analysis shows that the algorithm has global and superlinear convergence under some suitable conditions. In the end, numerical experiments are given to show that the method in this paper is effective.This work is supported by the National Natural Science Foundation (No. 10261001) and Guangxi Science Foundation (No. 0236001 and 0249003) of China. Acknowledgement.We would like to thank one anonymous referee for his valuable comments and suggestions, which greatly improved the quality of this paper.  相似文献   

3.
In this paper, a class of finely discretized Semi-Infinite Programming (SIP) problems is discussed. Combining the idea of the norm-relaxed Method of Feasible Directions (MFD) and the technique of updating discretization index set, we present a new algorithm for solving the Discretized Semi-Infinite (DSI) problems from SIP. At each iteration, the iteration point is feasible for the discretized problem and an improved search direction is computed by solving only one direction finding subproblem, i.e., a quadratic program, and some appropriate constraints are chosen to reduce the computational cost. A high-order correction direction can be obtained by solving another quadratic programming subproblem with only equality constraints. Under weak conditions such as Mangasarian–Fromovitz Constraint Qualification (MFCQ), the proposed algorithm possesses weak global convergence. Moreover, the superlinear convergence is obtained under Linearly Independent Constraint Qualification (LICQ) and other assumptions. In the end, some elementary numerical experiments are reported.  相似文献   

4.
In this paper, a modified nonmonotone line search SQP algorithm for nonlinear minimax problems is presented. During each iteration of the proposed algorithm, a main search direction is obtained by solving a reduced quadratic program (QP). In order to avoid the Maratos effect, a correction direction is generated by solving the reduced system of linear equations. Under mild conditions, the global and superlinear convergence can be achieved. Finally, some preliminary numerical results are reported.  相似文献   

5.
In this paper, a kind of optimization problems with nonlinear inequality constraints is discussed. Combined the ideas of norm-relaxed SQP method and strongly sub-feasible direction method as well as a pivoting operation, a new fast algorithm with arbitrary initial point for the discussed problem is presented. At each iteration of the algorithm, an improved direction is obtained by solving only one direction finding subproblem which possesses small scale and always has an optimal solution, and to avoid the Maratos effect, another correction direction is yielded by a simple explicit formula. Since the line search technique can automatically combine the initialization and optimization processes, after finite iterations, the iteration points always get into the feasible set. The proposed algorithm is proved to be globally convergent and superlinearly convergent under mild conditions without the strict complementarity. Finally, some numerical tests are reported.  相似文献   

6.
In this paper, motivated by Zhu et al. methods [Z.B. Zhu, K.C. Zhang, J.B. Jian, An improved SQP algorithm for inequality constrained optimization, Math. Meth. Oper. Res. 58 (2003) 271-282; Zhibin Zhu, Jinbao Jian, An efficient feasible SQP algorithm for inequality constrained optimization, Nonlinear Anal. Real World Appl. 10(2) (2009) 1220-1228], we propose a type of efficient feasible SQP algorithms to solve nonlinear inequality constrained optimization problems. By solving only one QP subproblem with a subset of the constraints estimated as active, a class of revised feasible descent directions are generated per single iteration. These methods are implementable and globally convergent. We also prove that the algorithms have superlinear convergence rate under some mild conditions.  相似文献   

7.
In this paper, a class of optimization problems with equality and inequality constraints is discussed. Firstly, the original problem is transformed to an associated simpler problem with only inequality constraints and a parameter. The later problem is shown to be equivalent to the original problem if the parameter is large enough (but finite), then a feasible descent SQP algorithm for the simplified problem is presented. At each iteration of the proposed algorithm, a master direction is obtained by solving a quadratic program (which always has a feasible solution). With two corrections on the master direction by two simple explicit formulas, the algorithm generates a feasible descent direction for the simplified problem and a height-order correction direction which can avoid the Maratos effect without the strict complementarity, then performs a curve search to obtain the next iteration point. Thanks to the new height-order correction technique, under mild conditions without the strict complementarity, the globally and superlinearly convergent properties are obtained. Finally, an efficient implementation of the numerical experiments is reported.  相似文献   

8.
A new SQP type feasible method for inequality constrained optimization is presented, it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations. The directions of the master algorithm are generated by only one quadratic programming, and its step-size is always one, the directions of the auxiliary algorithm are new “secondorder“ feasible descent. Under suitable assumptions, the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.  相似文献   

9.
In this paper we describe a new version of a sequential equality constrained quadratic programming method for general nonlinear programs with mixed equality and inequality constraints. Compared with an older version [P. Spellucci, Han's method without solving QP, in: A. Auslender, W. Oettli, J. Stoer (Eds), Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, vol. 30, Springer, Berlin, 1981, pp. 123–141.] it is much simpler to implement and allows any kind of changes of the working set in every step. Our method relies on a strong regularity condition. As far as it is applicable the new approach is superior to conventional SQP-methods, as demonstrated by extensive numcrical tests. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

10.
In this paper, we presented a modified QP-free filter method based on a new piecewise linear NCP functions. In contrast with the existing QP-free methods, each iteration in this algorithm only needs to solve systems of linear equations which are derived from the equality part in the KKT first order optimality conditions. Its global convergence and local superlinear convergence are obtained under mild conditions.  相似文献   

11.
§ 1  IntroductionThe nonlinear complementarity problem(NCP) is to find a pointx∈Rn such thatx Tf(x) =0 ,x≥ 0 ,f(x)≥ 0 ,(1 .1 )where f is a continuously differentiable function from Rninto itself.It is well known thatthe NCP is equivalent to a system of smoothly nonlinear equations with nonnegative con-straintsH (z)∶ =y -f(x)x . y =0 ,s.t. x≥ 0 ,y≥ 0 ,(1 .2 )where z=(x,y) and x y=(x1 y1 ,...,xnyn) T.Based on the above reformulation,many in-terior-point methods are established;see,fo…  相似文献   

12.
A new trust region method for nonlinear equations   总被引:1,自引:0,他引:1  
In this paper, a new trust region method for the system of nonlinear equations is presented in which the determining of the trust region radius incorporates the information of its natural residual. The global convergence is obtained under mild conditions. Unlike traditional trust region method, the superlinear convergence of the method is proven under the local error bound condition. This condition is weaker than the nondegeneracy assumption which is necessary for superlinear convergence of traditional trust region method. We also propose an approximate algorithm for the trust region subproblem. Preliminary numerical experiments are reported. Acknowledgements.The authors are indebted to our supervisor, Professor Y.-X. Yuan, for his excellent guidance and Jorge J. Moré for his subroutine. And we would like to thank the referees for their valuable suggestions and comments.  相似文献   

13.
We propose an SQP-type algorithm for solving nonlinear second-order cone programming (NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which the constraints involve linear approximations of the constraint functions in the original problem and the objective function is a convex quadratic function. Those subproblems can be transformed into linear SOCP problems, for which efficient interior point solvers are available. We establish global convergence and local quadratic convergence of the algorithm under appropriate assumptions. We report numerical results to examine the effectiveness of the algorithm. This work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science.  相似文献   

14.
We propose a modified sequential quadratic programming method for solving mixed-integer nonlinear programming problems. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer value, successive quadratic approximations are applied. The algorithm is stabilized by a trust region method with Yuan’s second order corrections. It is not assumed that the mixed-integer program is relaxable or, in other words, function values are evaluated only at integer points. The Hessian of the Lagrangian function is approximated by a quasi-Newton update formula subject to the continuous and integer variables. Numerical results are presented for a set of 80 mixed-integer test problems taken from the literature. The surprising result is that the number of function evaluations, the most important performance criterion in practice, is less than the number of function calls needed for solving the corresponding relaxed problem without integer variables.  相似文献   

15.
A globally convergent method for nonlinear programming   总被引:23,自引:0,他引:23  
Recently developed Newton and quasi-Newton methods for nonlinear programming possess only local convergence properties. Adopting the concept of the damped Newton method in unconstrained optimization, we propose a stepsize procedure to maintain the monotone decrease of an exact penalty function. In so doing, the convergence of the method is globalized.This research was supported in part by the National Science Foundation under Grant No. ENG-75-10486.  相似文献   

16.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

17.
In this paper, the nonlinear complementarity problem is transformed into the least squares problem with nonnegative constraints ,and a SQP algorithm for this reformulation based on a damped Gauss-Newton type method is presented. It is shown that the algorithm is globally and locally superlinearly (quadratically) convergent without the assumption of monotonicity.  相似文献   

18.
The smoothing-type algorithm has been successfully applied to solve various optimization problems. In general, the smoothing-type algorithm is designed based on some monotone line search. However, in order to achieve better numerical results, the non-monotone line search technique has been used in the numerical computations of some smoothing-type algorithms. In this paper, we propose a smoothing-type algorithm for solving the nonlinear complementarity problem with a non-monotone line search. We show that the proposed algorithm is globally and locally superlinearly convergent under suitable assumptions. The preliminary numerical results are also reported.  相似文献   

19.
In this paper, we introduce a cautious BFGS (CBFGS) update criterion in the reduced Hessian sequential quadratic programming (SQP) method. An attractive property of this update criterion is that the generated iterative matrices are always positive definite. Under mild conditions, we get the global convergence of the reduced Hessian SQP method. In particular, the second order sufficient condition is not necessary for the global convergence of the method. Furthermore, we show that if the second order sufficient condition holds at an accumulation point, then the reduced Hessian SQP method with CBFGS update reduces to the reduced Hessian SQP method with ordinary BFGS update. Consequently, the local behavior of the proposed method is the same as the reduced Hessian SQP method with BFGS update. The presented preliminary numerical experiments show the good performance of the method. This work was supported by the National Natural Science Foundation of China via grant 10671060 and 10471060.  相似文献   

20.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. Moreover, filter method, for its good numerical results, are extensively studied to handle nonlinear programming problems recently. In this paper, a modified quadratic subproblem is proposed. Based on it, we employ filter technique to tackle nonlinear complementarity problem. This method has no demand on initial point. The restoration phase, which is always used in traditional filter method, is not needed. Global convergence results of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号