首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We compute the solution of the one-dimensional Burgers’ equation by marching the solution in time using a Taylor series expansion. Our approach does not require symbolic manipulation and does not involve the solution of a system of linear or non-linear algebraic equations. Instead, we use recursive formulas obtained from the differential equation to calculate exact values of the derivatives needed in the Taylor series. We illustrate the effectiveness of our method by solving four test problems with known exact solutions. The numerical solutions we obtain are in excellent agreement with the exact solutions, while being superior to other previously reported numerical solutions.  相似文献   

2.
《随机分析与应用》2013,31(6):1553-1576
Abstract

Stochastic Taylor expansions of the expectation of functionals applied to diffusion processes which are solutions of stochastic differential equation systems are introduced. Taylor formulas w.r.t. increments of the time are presented for both, Itô and Stratonovich stochastic differential equation systems with multi-dimensional Wiener processes. Due to the very complex formulas arising for higher order expansions, an advantageous graphical representation by coloured trees is developed. The convergence of truncated formulas is analyzed and estimates for the truncation error are calculated. Finally, the stochastic Taylor formulas based on coloured trees turn out to be a generalization of the deterministic Taylor formulas using plain trees as recommended by Butcher for the solutions of ordinary differential equations.  相似文献   

3.
Abstract

We present a closed pricing formula for European options under the Black–Scholes model as well as formulas for its partial derivatives. The formulas are developed making use of Taylor series expansions and a proposition that relates expectations of partial derivatives with partial derivatives themselves. The closed formulas are attained assuming the dividends are paid in any state of the world. The results are readily extensible to time-dependent volatility models. For completeness, we reproduce the numerical results in Vellekoop and Nieuwenhuis, covering calls and puts, together with results on their partial derivatives. The closed formulas presented here allow a fast calculation of prices or implied volatilities when compared with other valuation procedures that rely on numerical methods.  相似文献   

4.
In this study, we will obtain the approximate solutions of relaxation–oscillation equation by developing the Taylor matrix method. A relaxation oscillator is a kind of oscillator based on a behavior of physical system’s return to equilibrium after being disturbed. The relaxation–oscillation equation is the primary equation of relaxation and oscillation processes. The relaxation–oscillation equation is a fractional differential equation with initial conditions. For this propose, generalized Taylor matrix method is introduced. This method is based on first taking the truncated fractional Taylor expansions of the functions in the relaxation–oscillation equation and then substituting their matrix forms into the equation. Hence, the result matrix equation can be solved and the unknown fractional Taylor coefficients can be found approximately. The reliability and efficiency of the proposed approach are demonstrated in the numerical examples with aid of symbolic algebra program, Maple.  相似文献   

5.
We introduce the concept of fast wavelet‐Taylor Galerkin methods for the numerical solution of partial differential equations. In wavelet‐Taylor Galerkin method discretization in time is performed before the wavelet based spatial approximation by introducing accurate generalizations of the standard Euler, θ and leap‐frog time‐stepping scheme with the help of Taylor series expansions in the time step. We will present two different time‐accurate wavelet schemes to solve the PDEs. First, numerical schemes taking advantage of the wavelet bases capabilities to compress the operators and sparse representation of functions which are smooth, except for in localized regions, up to any given accuracy are presented. Here numerical experiments deal with advection equation with the spiky solution in one dimension, two dimensions, and nonlinear equation with a shock in solution in two dimensions. Second, our schemes deal with more regular class of problems where wavelets are not efficient procedure for data compression but we can use the good approximation properties of wavelet. Here time‐accurate schemes lead to consistent mass matrix in an explicit time stepping, which can be solved by approximate factorization techniques. Numerical experiment deals with more regular class of problems like heat equation as well as coupled linear system in two dimensions. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

6.
We focus on a numerical scheme applied for a fractional oscillator equation in a finite time interval. This type of equation includes a complex form of left- and right-sided fractional derivatives. Its analytical solution is represented by a series of left and right fractional integrals and therefore is difficult in practical calculations. Here we elaborated two numerical schemes being dependent on a fractional order of the equation. The results of numerical calculations are compared with analytical solutions. Then we illustrate convergence and stability of our schemes.  相似文献   

7.
Taylor series based finite difference approximations of derivatives of a function have already been presented in closed forms, with explicit formulas for their coefficients. However, those formulas were not derived mathematically and were based on observation of numerical results. In this paper, we provide a mathematical proof of those formulas by deriving them mathematically from the Taylor series.  相似文献   

8.
An approximate method based on piecewise linearization is developed for the determination of periodic orbits of nonlinear oscillators. The method is based on Taylor series expansions, provides piecewise analytical solutions in three-point intervals which are continuous everywhere and explicit three-point difference equations which are P-stable and have an infinite interval of periodicity. It is shown that the method presented here reduces to the well-known Störmer technique, is second-order accurate, and yields, upon applying Taylor series expansion and a Padé approximation, another P-stable technique whenever the Jacobian is different from zero. The method is generalized for single degree-of-freedom problems that contain the velocity, and (approximate) analytical solutions are presented. Finally, by introducing the inverse of a vector and the vector product and quotient, and using Taylor series expansions and a Padé approximation, the method has been generalized to multiple degree-of-freedom problems and results in explicit three-point finite difference equations which only involve vector multiplications.  相似文献   

9.
传统的数值微分公式有前向差分、后向差分和中心差分公式.所谓一点超前差分公式,就是后向差分公式在形式上"前移"一点来计算一阶导数的公式.该公式有效地弥补了传统差分公式的不足之处.不同于以前研究中使用拉格朗日公式来推导一点超前公式的做法,给出了基于泰勒级数展开的对该组公式及其截断误差的推导,从另一个角度验证了一点超前公式,使其更为完善.  相似文献   

10.
A Chebyshev interval method for nonlinear dynamic systems under uncertainty   总被引:2,自引:0,他引:2  
This paper proposes a new interval analysis method for the dynamic response of nonlinear systems with uncertain-but-bounded parameters using Chebyshev polynomial series. Interval model can be used to describe nonlinear dynamic systems under uncertainty with low-order Taylor series expansions. However, the Taylor series-based interval method can only suit problems with small uncertain levels. To account for larger uncertain levels, this study introduces Chebyshev series expansions into interval model to develop a new uncertain method for dynamic nonlinear systems. In contrast to the Taylor series, the Chebyshev series can offer a higher numerical accuracy in the approximation of solutions. The Chebyshev inclusion function is developed to control the overestimation in interval computations, based on the truncated Chevbyshev series expansion. The Mehler integral is used to calculate the coefficients of Chebyshev polynomials. With the proposed Chebyshev approximation, the set of ordinary differential equations (ODEs) with interval parameters can be transformed to a new set of ODEs with deterministic parameters, to which many numerical solvers for ODEs can be directly applied. Two numerical examples are applied to demonstrate the effectiveness of the proposed method, in particular its ability to effectively control the overestimation as a non-intrusive method.  相似文献   

11.
The subject of this paper is an analytic approximate method for stochastic functional differential equations whose coefficients are functionals, sufficiently smooth in the sense of Fréchet derivatives. The approximate equations are defined on equidistant partitions of the time interval, and their coefficients are general Taylor expansions of the coefficients of the initial equation. It will be shown that the approximate solutions converge in the Lp-norm and with probability one to the solution of the initial equation, and also that the rate of convergence increases when degrees in Taylor expansions increase, analogously to real analysis.  相似文献   

12.
Fourier series and Taylor's expansions are commonly used in the fields of science and engineering. A whole range of interesting physical problems can be solved using one or the other of these standard techniques. Yet, there is a class of problems whose solutions exhibit near sinusoidal or repetitive behavior that cannot be solved using the above expansions. It is for these types of problems that the modified Taylor expansion has been developed. It is a method that combines the advantages of the repetitive behavior of sinusoidal functions and polynomial series. This technique has not been employed for tackling equations whose solutions are near sinusoidal. We discuss the method and apply it to a number of interesting problems that show its utility. Examples include the solution of differential, integral, integro-differential and functional equations. In addition, we propose an algorithm for the numerical integration of a function which exhibits near periodic behavior, namely the Bessel function. Most of the symbolic and numerical computations have been performed using the Computer Algebra System––Maple.  相似文献   

13.
We base on Taylor series expansions to construct the numerical method for solving singularly perturbed boundary value problems. We use the trapezoid method to approximate the integrals and obtain three‐term recurrence relationship. The efficiency of the proposed method is demonstrated by test problems. The numerical result is found in a good agreement with exact solution.  相似文献   

14.

In the paper we derive two formulas representing solutions of Cauchy problem for two Schrödinger equations: one-dimensional momentum space equation with polynomial potential, and multidimensional position space equation with locally square integrable potential. The first equation is a constant coefficients particular case of an evolution equation with derivatives of arbitrary high order and variable coefficients that do not change over time, this general equation is solved in the paper. We construct a family of translation operators in the space of square integrable functions and then use methods of functional analysis based on Chernoff product formula to prove that this family approximates the solution-giving semigroup. This leads us to some formulas that express the solution for Cauchy problem in terms of initial condition and coefficients of the equations studied.

  相似文献   

15.
We present an algorithm which, based on certain properties of analytic dependence, constructs boundary perturbation expansions of arbitrary order for eigenfunctions of elliptic PDEs. The resulting Taylor series can be evaluated far outside their radii of convergence—by means of appropriate methods of analytic continuation in the domain of complex perturbation parameters. A difficulty associated with calculation of the Taylor coefficients becomes apparent as one considers the issues raised by multiplicity: domain perturbations may remove existing multiple eigenvalues and criteria must therefore be provided to obtain Taylor series expansions for all branches stemming from a given multiple point. The derivation of our algorithm depends on certain properties of joint analyticity (with respect to spatial variables and perturbations) which had not been established before this work. While our proofs, constructions and numerical examples are given for eigenvalue problems for the Laplacian operator in the plane, other elliptic operators can be treated similarly.  相似文献   

16.
A piecewise linearization method based on the Taylor series expansion of the nonlinearities and forcing with respect to time, displacement and velocity for the study of smooth single degree-of-freedom problems, is presented. The method provides piecewise analytical solutions which are smooth everywhere, is second-order accurate in time and yields explicit finite difference formulae for the displacement and velocity. The method is applied to nine single degree-of-freedom problems and its accuracy is assessed in terms of the displacement, velocity and energy as functions of the time step, and its results are compared with those of piecewise linearization methods that use Taylor series expansion of the forcing and nonlinearities with respect to time. It is shown that, for nonlinear problems with unknown free frequency and damping, the linearization method presented here is more accurate and robust than linearization techniques based on Taylor series expansions with respect to time. For linear problems with oscillatory forcing, linearization methods that employ fourth-order expansions in time are more accurate than the linearization method proposed here provided that the time step is sufficiently small.  相似文献   

17.
A method for deriving transitional asymptotic expansions from integral representations is described and applied to Anger function and modified Hankel function. The method consists in deriving asymptotic expansions of the function considered as well as its first derivativeat the transition point using conventional methods such as Laplace’s method or the method of steepest descents. Since both the functions considered satisfy a second order linear differential equation, it is possible to obtain asymptotic expansions of higher order derivatives of the functions from the first two expansions. Thus asymptotic expressions for all the derivatives at the transition point are known and a Taylor expansion of the function in the neighbourhood of the transition point can be written. The method is also applicable to the generalized exponential integral, Weber’s parabolic cylinder function and Poiseuille function.  相似文献   

18.
We analyse some Taylor and Runge—Kutta type methods for computing one-dimensional integral manifolds, i.e. solutions to ODEs and DAEs. The distribution defining the solutions is taken to be defined only on the relevant manifold and hence all the intermediate points occuring in the computations are projected orthogonally to the manifold. We analyse the order of such methods, and somewhat surprisingly there does not appear any new order conditions for the Runge—Kutta methods in our context, at least up to order 4. The analysis shows that some terms appearing in the error expansions can be quite naturally expressed in terms of standard notions of Riemannian geometry. The numerical examples show that the methods work reliably and moreover produce qualitatively correct results for Hamiltonian systems although the methods are not symplectic.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
An accurate method for the numerical solution of the eigenvalue problem of second-order ordinary differential equation using the shooting method is presented. The method has three steps. Firstly initial values for the eigenvalue and eigenfunction at both ends are obtained by using the discretized matrix eigenvalue method. Secondly the initial-value problem is solved using new, highly accurate formulas of the linear multistep method. Thirdly the eigenvalue is properly corrected at the matching point. The efficiency of the proposed methods is demonstrated by their applications to bound states for the one-dimensional harmonic oscillator, anharmonic oscillators, the Morse potential, and the modified Pöschl–Teller potential in quantum mechanics.  相似文献   

20.
In this paper we develop and analyze a bootstrapping algorithm for the extraction of potentials and arbitrary derivatives of the Cauchy data of regular three-dimensional second order elliptic boundary value problems in connection with corresponding boundary integral equations. The method rests on the derivatives of the generalized Green's representation formula, which are expressed in terms of singular boundary integrals as Hadamard's finite parts. Their regularization, together with asymptotic pseudohomogeneous kernel expansions, yields a constructive method for obtaining generalized jump relations. These expansions are obtained via composition of Taylor expansions of the local surface representation, the density functions, differential operators and the fundamental solution of the original problem, together with the use of local polar coordinates in the parameter domain. For boundary integral equations obtained by the direct method, this method allows the recursive numerical extraction of potentials and their derivatives near and up to the boundary surface.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号