首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel constitutive equation which considers the macroscopic and microscopic relaxation characteristics and the memory and nonlocal characteristics is proposed to describe the anomalous diffusion in comb model. Formulated governing equation with the fractional derivative of order 1 + α corresponds to a diffusion-wave one and solutions are obtained analytically with the Laplace and Fourier transforms. As the solutions show, the existence of macroscopic relaxation parameter makes the expression of mean square displacement contain an integral form and the specific value for the microscopic relaxation parameter and macroscopic one changes the coefficient of fractional integral. The particle distribution and mean square displacement of Fick's model and the dual-phase-lag model are same at the short and long time behaviors and the special case of equal macroscopic and microscopic relaxation parameters. The particle distributions and mean square displacement with the effects of different parameters are presented graphically. Results show that the wave characteristic becomes stronger for a larger α, a larger τq or a smaller τP. For mean square displacement, the magnitude is larger at the short time behavior and smaller at the long time behavior for a smaller α. Besides, for a smaller τq or a larger τP, the magnitude is larger.  相似文献   

2.
In this paper, we state and prove a new formula expressing explicitly the derivatives of shifted Chebyshev polynomials of any degree and for any fractional-order in terms of shifted Chebyshev polynomials themselves. We develop also a direct solution technique for solving the linear multi-order fractional differential equations (FDEs) with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives (described in the Caputo sense) are based on shifted Chebyshev polynomials TL,n(x) with x ∈ (0, L), L > 0 and n is the polynomial degree. We presented a shifted Chebyshev collocation method with shifted Chebyshev–Gauss points used as collocation nodes for solving nonlinear multi-order fractional initial value problems. Several numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results.  相似文献   

3.
The aim of this work is investigate the stability of fractional neutron point kinetics (FNPK). The method applied in this work considers the stability of FNPK as a linear fractional differential equation by transforming the s  plane to the W  plane. The FNPK equations is an approximation of the dynamics of the reactor that includes three new terms related to fractional derivatives, which are explored in this work with an aim to understand their effect in the system stability. Theoretical study of reactor dynamical systems plays a significant role in understanding the behavior of neutron density, which is important in the analysis of reactor safety. The fractional relaxation time (τα) for values of fractional-order derivative (α) were analyzed, and the minimum absolute phase was obtained in order to establish the stability of the system. The results show that nuclear reactor stability with FNPK is a function of the fractional relaxation time.  相似文献   

4.
By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange’s characteristics method (a new approach) for solving nonlinear fractional partial differential equations. The key of this results is the fractional Taylor’s seriesf(x + h) = E α(hαDα)f(x) whereE α(·) is the Mittag-Leffler function.  相似文献   

5.
A method for deriving one-dimensional wave propagation equations in thin inhomogeneous anisotropic bars based on the mathematical homogenization theory for periodic media is used to obtain equations governing the longitudinal and transverse vibrations of a homogeneous circular bar. The equations are derived up to O8) terms and take into account variable body forces and surface loads. Here, ε is the ratio of the bar’s typical thickness to the typical wavelength.  相似文献   

6.
We study short wavelength solutions to the n-dimensional wave equation utt =(c(x))2Δu. We prove that the propagation of certain spatially localized pulses is determined by a time dependent analogue of geometrical optics up to an error whose energy tends to zero in the zero wavelength limit. Our method is very explicit, and no difficulties are incurred as the pulses propagate through caustics. Our goal is to study the physical question of where the energy propagates, rather than the more mathematical question of the propagation of singularities which has been studied in Fourier integral operators.  相似文献   

7.
Large eddy simulation (LES) using a dynamic eddy viscosity subgrid scale stress model and a fast-chemistry combustion model without accounting for the finite-rate chemical kinetics is applied to study the ignition and propagation of a turbulent premixed V-flame. A progress variable c-equation is applied to describe the flame front propagation. The equations are solved two dimensionally by a projection-based fractional step method for low Mach number flows. The flow field with a stabilizing rod without reaction is first obtained as the initial field and ignition happens just upstream of the stabilizing rod. The shape of the flame is affected by the velocity field, and following the flame propagation, the vortices fade and move to locations along the flame front. The LES computed time-averaged velocity agrees well with data obtained from experiments.  相似文献   

8.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0 < α < 1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.  相似文献   

9.
The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on by-passing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable functionf(x + h) =E α (h α D x α )f(x).  相似文献   

10.
This paper is concerned with fractional abstract Cauchy problems with order \({\alpha\in(1,2)}\). The notion of fractional solution operator is introduced, its some properties are obtained. A generation theorem for exponentially bounded fractional solution operators is given. It is proved that the homogeneous fractional Cauchy problem (FACP 0) is well-posed if and only if its coefficient operator A generates an α-order fractional solution operator. Sufficient conditions are given to guarantee the existence and uniqueness of mild solutions and strong solutions of the inhomogeneous fractional Cauchy problem (FACP f ).  相似文献   

11.
An unsteady free convective flow through porous media of viscous, incompressible, electrically conducting fluid through a vertical porous channel with thermal radiation is studied. A magnetic field of uniform strength is applied perpendicular to the vertical channel. The magnetic Reynolds number is assumed very small so that the induced magnetic field effect is negligible. The injection and suction velocity at both plates is constant and is given by v 0. The pressure gradient in the channel varies periodically with time along the axis of the channel. The temperature difference of the plates is high enough to induce the radiative heat. Taking Hall current and Soret effect into account, equations of motion, energy, and concentration are solved. The effects of the various parameters, entering into the problem, on velocity, temperature and concentration field are shown graphically.  相似文献   

12.
In this paper, we introduce two definitions of the differentiability of type-2 fuzzy number-valued functions of fractional order. The definitions are in the sense of Riemann–Liouville and Caputo derivative of order β  (0, 1), and based on type-2 Hukuhara difference and H2-differentiability. The existence and uniqueness of the solutions of type-2 fuzzy fractional differential equations (T2FFDEs) under Caputo type-2 fuzzy fractional derivative and the definition of Laplace transform of type-2 fuzzy number-valued functions are also given. Moreover, the approximate solution to T2FFDE by a Predictor-Evaluate–Corrector-Evaluate (PECE) method is presented. Finally, the approximate solutions of two examples of linear and nonlinear T2FFDEs are obtained using the PECE method, and some cases of T2FFDEs applications in some sciences are presented.  相似文献   

13.
The problem of designing filter banks for multidimensional multirate systems by using a lifting technique is considered. To solve it, we develop a design method for multidimensional digital filters with fractional shift. A symmetric structure is defined for τ = (1/2, 1/2) and a new structure is designed based on application of multidimensional Taylor series. Frequency and impulse responses are given for filters with fractional space shift and their L 2-norm is found. Relevant wavelet functions are calculated and results of image compression by the designed filter banks are presented.  相似文献   

14.
A propagation of a short optical pulse in nonlinear birefringent fibre is described by a system of two coupled Schrödinger equations. By means of variational Anderson method this system reduces to the system of ordinary differential equations for spatial evolution of pulse parameters. In two ultimate cases the analytical solutions of the equations are managed to be found. It is shown that at some critical power of the input pulse Wc the regime of propagation changes. For the power exceeding Wc the radiation concentrates in one channel. The numerical investigation of the intermediate cases was done when by the variation of the input pulse power one can achieve the comparable effectiveness of the competing processes of dispersion broadening and nonlinear pulse compression. The numerical simulations show that in the range of critical values of the nonlinear coupling coefficient the transition takes place to the chaotic phase and amplitude behavior of the coupled waves of different polarizations. The research is important to understand the processes of ultra short digital pulses propagation in optical fibre links.  相似文献   

15.
This paper presents a research for the anomalous diffusion on a circular comb-like structure with nonisotropic relaxation in angular and radial direction. The nonlinear governing equation is formulated and solved by finite volume method (FVM), which is verified with the analytical one in a particular case. The effects of involved parameters on mean squared displacements (MSD) are discussed and a particular characteristic of two periods of time are found: in a long period and a relatively short period. We find that MSD converges to a constant as the particles saturate the circular comb structure (because of the finite region) for a long period, but it has a growth form of tα on τt ≪ 1 for a relatively short period, where τ is the maximum of two relaxation parameters in radial τr and angular τθ respectively. Moreover, the influence of the nonisotropic relaxation parameters on exponent α is also analyzed. From these, we may assert that there exists an invariant for α ( ≈ 1/2), which is independent of relaxation parameters.  相似文献   

16.
This paper is devoted to the numerical simulation of two-dimensional stationary Bingham fluid flow by semismooth Newton methods. We analyze the modeling variational inequality of the second kind, considering both Dirichlet and stress-free boundary conditions. A family of Tikhonov regularized problems is proposed and the convergence of the regularized solutions to the original one is verified. By using Fenchel’s duality, optimality systems which characterize the original and regularized solutions are obtained. The regularized optimality systems are discretized using a finite element method with (cross-grid P1)-Q0 elements for the velocity and pressure, respectively. A semismooth Newton algorithm is proposed in order to solve the discretized optimality systems. Using an additional relaxation, a descent direction is constructed from each semismooth Newton iteration. Local superlinear convergence of the method is also proved. Finally, we perform numerical experiments in order to investigate the behavior and efficiency of the method.  相似文献   

17.
It is proposed a class of statistical estimators H =(H_1,…,H_d) for the Hurst parameters H =(H_1,…,H_d) of fractional Brownian field via multi-dimensional wavelet analysis and least squares,which are asymptotically normal.These estimators can be used to detect self-similarity and long-range dependence in multi-dimensional signals,which is important in texture classification and improvement of diffusion tensor imaging(DTI) of nuclear magnetic resonance(NMR).Some fractional Brownian sheets will be simulated and the simulated data are used to validate these estimators.We find that when H_i ≥ 1/2,the estimators are accurate,and when H_i 1/2,there are some bias.  相似文献   

18.
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L norm and weighted L2-norm. The numerical examples are given to illustrate the theoretical results.  相似文献   

19.
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.  相似文献   

20.
This study deals with obtaining numerical solutions of two-dimensional (2D) fractional cable equation in neuronal dynamics by using a recently introduced meshless method. In solution process at first stage, time derivatives that are appeared in the considered problem are discretized by using finite difference method. Then a meshless method based on hybridization of Gaussian and cubic kernels is developed in local fashion. The problem is solved both on regular and irregular domians. L and RMS error norms are calculated and compared with other numerical methods in literature as well as exact solutions. Also, obtained condition numbers are monitored. Numerical simulations show that local hybrid kernel meshless method is a thriving method for solving 2D fractional cable equation on regular and irregular domians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号