首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract

This paper deals with a broad class of optimum frame design problems amenable to the mathematical model of linear programming: allowance is made for self-weight (design dependent loads) and technological constraints “assigned minimum for yield moments, prescribed variation laws of yield moments along members”. Two alternative “static” formulations and the corresponding dual “kinematic” formulations are discussed and compared to each other. The main limit design theorems, generalized to the present broader context, are derived on the basis of duality theory of linear programming. Numerical examples, worked out by means of standard LP computer codes, are given.  相似文献   

2.
A phenomenological, flow theory version of gradient plasticity for isotropic and anisotropic solids is constructed along the lines of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain-gradient plasticity. J. Mech. Phys. Solids 52, 1379-1406]. Both energetic and dissipative stresses are considered in order to develop a kinematic hardening theory, which in the absence of gradient terms reduces to conventional J2 flow theory with kinematic hardening. The dissipative stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition with associated plastic flow. The theory includes interfacial terms: elastic energy is stored and plastic work is dissipated at internal interfaces, and a yield surface is postulated for the work-conjugate stress quantities at the interface. Uniqueness and extremum principles are constructed for the solution of boundary value problems, for both the rate-dependent and the rate-independent cases. In the absence of strain gradient and interface effects, the minimum principles reduce to the classical extremum principles for a kinematically hardening elasto-plastic solid. A rigid-hardening version of the theory is also stated and the resulting theory gives rise to an extension to the classical limit load theorems. This has particular appeal as previous trial fields for limit load analysis can be used to generate immediately size-dependent bounds on limit loads.  相似文献   

3.
Summary  Criteria for a priori recognition of the type of steady-state response induced by cyclic loads and prediction whether a structure will shakedown elastically or not, without the necessity of performing a step-by-step full analysis, have considerable importance. Melan and Koiter theorems provide criteria that guarantee whether elastic shakedown occurs or not under cyclic loads in case of perfect plasticity. However, there remain some aspects of the shakedown theory which deserve further study. One of these, concerned with more realistic nonassociative elastic–plastic constitutive material models, allowing for nonlinear kinematic and isotropic hardening suitable to describe the cyclic plastic behaviour of metallic materials, has strong motivation. Koiter's elastic nonshakedown theorem is reconsidered here, with the objective of extending it to the de Saxcé's implicit standard material class, which contains a wide class of nonassociative elastic–plastic material behaviours. Shakedown analysis is formulated by a kinematic approach based on the plastic accumulation mechanism concept due to Polizzotto. A sufficient condition for elastic nonshakedown and a distinct necessary condition are established. Then, an upper bound to the shakedown multiplier is evaluated. Received 15 February 2001; accepted for publication 18 October 2001  相似文献   

4.
This paper presents a general formulation for the analysis of reinforced concrete frames. The model has been developed within the framework of lumped damage mechanics. This is a theory based on the methods of continuum damage mechanics, fracture mechanics and the concept of plastic hinge. The paper also describes the numerical implementation of the model in the finite element programs. The model is evaluated by the numerical simulation of three tests reported in the literature. Two of them deal with a column subjected to variable axial loads and biaxial flexure. The third is a two-story three-dimensional frame subjected to earthquake loadings outside the principal directions of the frame.  相似文献   

5.
A dynamic shakedown theory is formulated, which preserves all the essentials of the classical quasistatic theory. The emphasis is given to the kinematic theorem. A reduced path-independent kinematic inequality, which does not involve time integrals, is deduced. An analytical example illustrates the application of both static and reduced kinematic theorems in the dynamic range.  相似文献   

6.
Abstract

Dynamic adaptation of plastic structures is considered, assuming that the loading process is described by a random function of time. Since classical shakedown theory fails under stochastic loading, the need to follow the evolution of plastic deformations and displacements is recognized. To this end, bounding theorems for plastic displacements are extended to treat random loading. The theory is explained with reference to a simple structural pattern, i.e., an elastic-plastic work-hardening shear frame. A practical example concerning damage to a structure in a seismic site is numerically treated, and the results are evaluated against aseismic standard codes.  相似文献   

7.
On the basis of the implicit standard materials that introduces a function, called bipotential, depending on both the stress and plastic strain rate, this paper is devoted to present a new approach of shakedown analysis for non standard elastoplastic materials. The bipotential theory was successfully applied to geomaterials with non-associated flow rule and Coulomb's dry friction law. The present analysis is different to the Melan's potential and it is based on a corner stone inequality satisfied by the bipotential and the existence of time-independent residual stress field. The deduction of bound theorems, static and kinematic, is detailed in the present article.  相似文献   

8.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

9.
10.
A structural theory is presented for the large static plastic deformation of space frames composed of thin walled members. Displacements comparable to the overall structural dimensions are contemplated. The frame is considered to consist of an arbitrary number of beam elements connected at node points. The analysis assumes that plastic deformation is confined to idealized hinges located at the node points. As a basis for a general frame computer program, the equations for a beam element are derived as a relationship between appropriate generalized force and deformation rates. The structural constitutive theory employed for the plastic hinge includes biaxial bending, torsion, and axial extension. It accounts for reduction in the load carrying capacity of the hinge due to local deformation. Predicted force-deformation curves for a space frame are in good agreement with experimental results.  相似文献   

11.
ABSTRACT

A method for optimum plastic design of plane frames is studied, taking into account the axial force-bending moment interaction plastic behavior. The frame is regarded as a discrete model, formed by rigid elements which are separated by (generalized) plastic hinges. Alternative loading conditions are considered, in addition to the action of the design-dependent self-weight. The optimization problem is solved as a problem of linear programming into which some technological and construction requirements are also introduced. Optimality conditions are also discussed.  相似文献   

12.
Slope-Deflection Method for elastic rigid frames is generalized for elastic-plastic analysis of rigid frames of work-hardening materials. The plastic strain is here treated as an additional set of externally applied moments. The end moments of the component members of the frame are obtained from the solution of a set of linear algebraic equations. No iteration is required. Numerical results of the analysis of a portal frame and a two-story plane frame subject to side loads beyond the elastic range are shown.  相似文献   

13.
A typical doubly-reinforced concrete rectangular plate is subjected to quasi-static (and more general quasiperiodic dynamic) transverse loads. The amount of reinforcements can be different in the upper and lower layers, in the central and rear parts of the plate, and in different directions, as usually designed in practice. An upper bound kinematic approach, which involves construction of potential collapse kinematic fields with plastic hinge lines, is developed to evaluate the non-shakedown loads corresponding to the respective collapse modes. The relations between the non-shakedown load parameters (frequency, amplitude limits) and the reinforcement parameters are derived for practical use. The kinematic assumptions with plastic hinge lines reduce the set of admissible kinematic fields for our upper bound approach, however the procedure appears relatively simple, visual, and can be developed to investigate the behaviour of other plates in various loading and reinforcement schemes, like the respective approach of plastic limit analysis, which was restricted to static loading.  相似文献   

14.
The classical shakedown theory is extended to a class of perfectly plastic materials with strengthening effects (Hall–Petch effects). To this aim, a strain gradient plasticity model previously advanced by Polizzotto (2010) is used, whereby a featuring strengthening law provides the strengthening stress, i.e. the increase of the yield strength produced by plastic deformation, as a degree-zero homogeneous second-order differential form in the accumulated plastic strain with associated higher order boundary conditions. The extended static (Melan) and kinematic (Koiter) shakedown theorems are proved together with the related lower bound and upper bound theorems. The shakedown limit load problem is addressed and discussed in the present context, and its solution uniqueness shown out. A simple micro-scale structural system is considered as an illustrative example. The shakedown limit load is shown to increase with decreasing the structural size, which is a manifestation of the classical Hall–Petch effects in a context of cyclic loading.  相似文献   

15.
The classical shakedown kinematic theorem due to Koiter for elastic–perfectly plastic bodies is re-examined and divided into separated shakedown and nonshakedown theorems. While the shakedown theorem is based on the set of Koiter's plastic strain rate cycles, the non-shakedown one involves a broader set of admissible plastic strain rate cycles, the end-cycle accumulated strains of which are deviatoric parts of compatible strain fields. For certain broad classes of practical problems the two statements are unified to yield the unique theorem in Koiter's sense.  相似文献   

16.
冯晔  李杰 《力学学报》2023,55(4):895-902
对于保守系统,能量变分原理为推导力学系统控制方程提供了简洁的途径.对于耗散系统,控制方程的建立往往需要引入经验的或理性的假定,增大了建模的难度.针对耗散系统,引入系统局部稳定的概念,并在此基础上,提出一类虚功变分不等式.这一不等式事实上揭示了耗散系统的一类虚功不等原理.该原理的物理含义为:使系统状态稳定的必要条件是,在该状态附近所有可能的虚拟路径上系统释放的势能不大于系统耗散的能量.研究表明:仅需结合虚功不等原理和能量守恒原理,即可导出准静态系统力学状态量的全部控制方程.作为应用,文章重新讨论了塑性力学,结合虚功不等原理与能量守恒原理,导出经典塑性力学的全部控制方程,并证明了经典的最大塑性耗散原理可以作为虚功不等原理的推论导出;同时,以Mohr-Coulomb强度准则为例,讨论了虚功不等原理在强度理论中的应用,说明基于应力的强度准则可以是基于能量的稳定性准则的推论.上述例子说明了虚功不等原理的广泛适用性和在建立耗散系统控制方程中的有效性.  相似文献   

17.
多孔材料塑性极限载荷及其破坏模式分析   总被引:4,自引:1,他引:4  
运用塑性力学中的机动极限分析理论,研究韧性基体多孔材料的塑性极限承载能力和破坏模式。以多孔材料的细观结构为研究对象,将细观力学中的均匀化理论引入到塑性极限分析中,并结合有限元技术,建立细观结构极限载荷的一般计算格式,并提出相应的求解算法。数值算例表明:细观孔洞对材料的宏观强度影响明显;在单向拉伸作用下,孔洞呈现膨胀扩大规律;多孔材料破坏源于基体塑性区的贯通。  相似文献   

18.
Parallel robots are extensively used for various applications including manipulation, machining, guiding, testing and control. The mechanical architecture of parallel robots is based on parallel mechanisms in which a mobile platform is connected to a reference element by at least two legs. Mobility and spatiality are the main structural and kinematic parameters of a parallel robot. These two parameters are defined via the theory of linear transformation and can be easily determined by inspection using the definitions, properties and theorems introduced in this paper. An analytical method to compute these parameters is also presented just for verification and for a better understanding of their meanings. The new formalism presented in this paper is based on spatiality of an elementary open kinematic chain and relative spatiality between two elements of a closed kinematic chain. As far as we are aware, this paper demonstrates for the first time a new formula for calculation of general (full-cycle) mobility of parallel robots that overcomes the drawbacks of Chebychev–Grübler–Kutzbach's mobility criterion largely used for mobility calculation of multi-loop mechanisms. This new formula is easily applicable to parallel robotic manipulators with elementary or complex legs and mobility calculation does not involve the setting up of instantaneous constraint systems associated to the parallel mechanism.  相似文献   

19.
目前框架结构体系可靠度分析大多是在荷载完全相关的假定下完成的,对于非完全相关荷载作用下的体系可靠度研究则鲜有涉及,对于非理想弹塑性或弹脆性的结构尤其如此.本文在随机系统分析的概率密度演化理论的基础上,结合结构非线性全过程分析的位移控制算法,推导了基于归一化位移参数的结构非线性发展概率密度演化方程和承载力裕度的概率密度演化方程.采用纤维梁柱单元进行非线性分析,研究了钢筋混凝土框架结构在非完全相关荷载下的体系可靠度,并与Monte Carlo法进行了对比分析,证明了文中建议方法的可行性.基于文中方法,分析了荷载相关性对可靠度的影响,计算结果表明,荷载相关性对体系可靠度有比较明显的影响.  相似文献   

20.
Shakedown static and kinematic theorems for elastic–plastic (generally nonlinear) kinematic hardening solids are derived in classical (path-independence) spirit with new constructions. The generally plastic-deformation-history-dependent hardening curve is assumed to be limited by the initial yield stress and ultimate yield strength, and to obey a positive hysteresis postulate for closed plastic cycles, but else can be arbitrary and unspecified. The theorems reveal that the shakedown of structures is not affected by the particular form of the hardening curve, but just by the initial and ultimate yield stresses. While the ultimate yield strength is clearly defined macroscopically and attached to the incremental collapse mode with unbounded plastic deformations, the initial yield stress, which is responsible for the bounded cyclic plasticity collapse mode, should not be taken as the convenient one at a fixed amount of plastic deformation (0.2%), but is suggested to be taken as low as the fatigue limit to preserve the classical load-history-independence spirit of the shakedown theorems. Otherwise, for our pragmatic application purpose, it may be given empirical values between the low fatigue limit and high ultimate yield stresses according to particular loading processes considered, which may range anywhere between the high-cycle and low-cycle ones. The theorems appear as simple as those of Melan and Koiter for perfect plasticity but applied to the much larger class of more realistic kinematic hardening materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号