首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional bitwise optical recording with a density of 500 Gb/cm3 in fused silica using a Ti:sapphire femtosecond laser modulated by binary digits is demonstrated. Laser pulses modulation is realized by modulating two circuits of trigger pulses signal which are used to control laser pulses trapping and switching out from cavity, respectively. Bits are optically readout in both a parallel reading (phase-contrast) and a serial reading (confocal-type) methods. The method for modulating laser pulses can also be used in all of pulsed laser systems which operate in cavity-dumping configuration.  相似文献   

2.
We introduce a novel method to generate the optical vortex with computer-generated hologram (CGH) fabricated inside glass by femtosecond laser pulses. The CGH was directly written inside glass by femtosecond laser pulses induced microexplosion without any pre- or post-treatment of the material. We also realized the restructured optical vortex beams of both the transmission and reflection pattern with high fidelity using a collimated He-Ne laser beam. The total diffractive efficiency of both the transmission and reflection pattern is about 4.79%.  相似文献   

3.
王鹿霞  樊飞 《物理学报》2009,58(4):2812-2819
将优化控制理论和多组态含时Hartree(MCTDH)方法相结合,建立了适合于MCTDH方法的计算具有平面结构的PTCDA分子的多自由度振动量子模型,研究了在PTCDA分子激发后从分子激发态回落至分子基态的动力学过程.在理论上分析了约化目标态产生率与激发脉冲、分子的演变时间及优化场的有效能量之间的关系,对分子在各个振动坐标下波函数的振动分布做了分析与比较.研究发现,增加分子的回落演变时间在提高目标态产生率的同时可以使优化激光控制场的强度降低,这为实验上用低能量激光最大程度地实现目标态提供了有效手段. 关键词: PTCDA 多组态含时Hartree方法 飞秒激光控制  相似文献   

4.
The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schr6dinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.  相似文献   

5.
Peng Xi 《Optics Communications》2008,281(7):1841-1849
The fundamental advantages to using ultrafast (?100 fs) laser pulses in two-photon microscopy for biomedical imaging are seldom realized due to chromatic dispersion introduced by the required high numerical aperture microscope objective. Dispersion is eliminated here by using the multiphoton intrapulse interference phase scan (MIIPS) method on pulses with a bandwidth greater than 100 nm full width at half maximum. Higher fluorescence intensity, deeper sample penetration, and improved signal-to-noise ratio are demonstrated quantitatively and qualitatively. Due to the higher signal intensity obtained after MIIPS compensation, lower laser power is required, which decreases photobleaching. The observed advantages are not realized if group delay dispersion is compensated for while higher-order dispersion is not. By using a pulse shaper and taking advantage of the broad spectrum of the ultrafast laser, selective excitation of different cell organelles is achieved due to the difference in nonlinear optical susceptibility of different chromophores without requiring an emission filter wheel. Experiments on biological specimens, such as HeLa cells and mouse kidney tissue samples, illustrate the advantages to using sub-10 fs pulses with MIIPS compensation in the field of two-photon microscopy for biomedical imaging.  相似文献   

6.
A femtosecond UV laser pulse is used to resonantly excite CsCl molecules from the ionically bound ground state to the first excited repulsive state. The excitation leads to the dissociation of CsCl. After a certain time delay a visible (VIS) femtosecond laser pulse interrupts the dissociation process by resonantly de-exciting the molecule back to the ground state. According to the Tannor–Rice control scheme, the fraction of dissociated CsCl molecules is controlled by changing the delay time between the two fs laser pulses. The processes involved are investigated theoretically and experimentally. Based on the results, a self-learning system has been realized, which is able to control the dissociation without any a priori knowledge of the molecule. Received: 2 December 1999 / Published online: 24 July 2000  相似文献   

7.
Doubled femtosecond laser pulses in-line are needed in the collinear pump-probe technique, collinear second harmonic generation frequency-resolved optical gating (SHG FROG) and the spectral phase interferometry for direct electric-field reconstruction (SPIDER), etc. Normally, it is generated by using a Michelson's structure. In this paper, we proposed a novel structure with two-layered reflective Dammann gratings and the reflective mirrors to generate doubled femtosecond laser pulses in line without transmission optical elements. Angular dispersion and spectral spatial walk-off are both compensated. In addition, this structure can also compress the positive chirped pulse, which cannot be realized with a Michelson's structure. By adopting triangular grating and blazed gratings, the efficiency of the system would in principle be increased as the Michelson's scheme. Experiments demonstrated that this method should be an alternative approach for generation of the double compressed pulses of femtosecond laser for practical applications.  相似文献   

8.
A novel method is described that enables the prediction of the main laser parameters (threshold pump power, output power, slope- and extraction efficiency) without having realized the laser itself. The emitted fluorescence power of an end-on pumped fiber is absolutely measured along the fiber. Using specific material parameters of the doped glass and the waveguide attenuation, we calculate the laser properties without taking the resonator losses into account. This approach is extremely useful for fibers with special design parameters. We have used this method to characterize a fiber with a novel design, the M-profile fiber. Combining the results with the measurements on the realized laser, the impact of resonator losses (e.g., tilted fiber endfaces, effects of butt-coupled mirrors) can be inferred and improvements can be undertaken.  相似文献   

9.
Ionization of a model two-electron atom in the presence of a strong field of ultrashort laser pulses is investigated using the numerical integration of the nonstationary Schrödinger equation, which describes the dynamics of a quantum system in the presence of an electromagnetic wave. The features of two-electron ionization in the presence of one-and two-cycle pulses are analyzed. The suppression of double ionization in the presence of ultrashort laser pulses related to a finite-time interelectron energy exchange upon the laser action is demonstrated. The features of the generation of high-order harmonics and single XUV attosecond pulses are studied for the atomic ionization by few-cycle laser pulses. The parameters of the laser pulse are optimized for the effective generation of a single XUV attosecond pulse.  相似文献   

10.
徐天宇  何峰 《物理学报》2013,62(6):68201-068201
通过求解含时薛定谔方程, 提出了利用三束激光脉冲控制H2+解离以及解离过程中电子位置的方案. 第一束阿秒激光脉冲将H2+从1sσg激发至2pσu, 在H2+的解离过程中, 引入两束波长分别为800 nm 与400 nm 的飞秒激光脉冲控制电子在分子内部的运动. 通过改变两束激光脉冲的绝对相位, H2+解离后电子的位置可以得到有效控制(最大有86%的概率使得电子附着在某一个原子核上). 现有的激光技术条件可以在实验上实现这一理论方案. 关键词: 相干控制 电子位置 不对称性参数 2+')" href="#">H2+  相似文献   

11.
Abstract

A novel method is described that enables the prediction of the main laser parameters (threshold pump power, output power, slope- and extraction efficiency) without having realized the laser itself. The emitted fluorescence power of an end-on pumped fiber is absolutely measured along the fiber. Using specific material parameters of the doped glass and the waveguide attenuation, we calculate the laser properties without taking the resonator losses into account. This approach is extremely useful for fibers with special design parameters. We have used this method to characterize a fiber with a novel design, the M-profile fiber. Combining the results with the measurements on the realized laser, the impact of resonator losses (e.g., tilted fiber endfaces, effects of butt-coupled mirrors) can be inferred and improvements can be undertaken.  相似文献   

12.
The strong-field coherent control of the nonresonant ionization of nitrous oxide using shaped pulses is investigated.We study the dependence of periodic coherent oscillation of the total ionization yield on the variation of laser phase parameters. The physical mechanism of the strong-field coherent control is investigated experimentally and theoretically by the nonresonant spectral phase interferences in the frequency domain. We show that the intense shaped pulses with broadband and off-resonance can be used as a robust strong-field coherent control method.  相似文献   

13.
 为了获得短波长自由电子激光(FEL),可以使储存环中的相对论性电子与外加强激光脉冲在光学速调管中充分耦合,从而产生高次谐波的相干辐射。为使耦合充分,必须使电子束团与激光脉冲在时间和空间上完全同步。其中空间上的同步可通过调节外激光的光路来实现,给出了实现时间上同步的一种方案。  相似文献   

14.
Different experimental methods to maximize the yield of highly charged ions in silver and xenon clusters interacting with intense and ultra‐short optical laser pulses are discussed. Theoretically, the interaction of strong laser fields with clusters is investigated within the nanoplasma model. The time evolution of the laser intensity has been parametrized. The free optimization of the parameters with a genetic algorithm is an effective but expensive tool to control the plasma dynamics. Comparison is given to the parametric control method in which pulse separation and relative intensity ratio of double‐pulses are varied. This method delivers in the case of silver and xenon clusters pulses quite close to the optimal pulse shape (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a sub- wavelength structure, which is described by the full Maxwell-Bloch equations without the frame of slowly varying envelope and rotating wave approximations. The input pulses can be shaped into shorter ones with a single or less than one optical cycle. The effect of the parameters of the subwavelength structure and laser pulses is studied. Our study shows that the media with a subwavelength structure can significantly shape the few-cycle pulses into a subcycle pulse, even for the case of chirp pulses as input fields. This suggests that such subwavelength structures have potential application in the shaping of few-cycle laser pulses.  相似文献   

16.
We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.  相似文献   

17.
Absorption, electron-phonon coupling and heating of nanoparticles (NPs) under action of short laser pulses on NPs and their cooling after the end of laser action usually has nonlinear character. Nonlinear electron-phonon coupling under action of pico- and femtosecond pulses on metal NPs depends on electron and lattice parameters. Optical (absorption, scattering, extinction) and thermo-physical (coefficient of thermal conductivity, heat capacity, etc.) parameters of different materials of NPs (metals, oxides, semiconductors, etc.) and environments (water, liquids, dielectrics, etc.) depend on temperature and determine nonlinear dynamics of NPs heating and cooling. It is very important to take into account the temperature dependence of optical and thermophysical parameters of NPs and surrounding media under investigation of absorption of laser radiation, electron-phonon coupling, nanoparticle (NP) heating, heat transfer and its cooling after the end of laser pulse action. Theoretical modeling of the processes of laser-NP interaction taking into account temperature dependences of parameters of NPs and environments was carried out. Influence of temperature dependences of these parameters on values and dynamics of the processes is determined.  相似文献   

18.
A new method of lasing of single picosecond pulses in a short-cavity dye laser with spatial separation of the lasing medium and the saturable absorber in the case of pumping by nanosecond pulses with energies much higher than the oscillation threshold has been developed and experimentally realized. The method is based on the use of a high-Q, external cavity tuned to the amplification wavelength of the saturable absorber. The first picosecond pulse is lased at a lasing-medium wavelength and the subsequent pulses are lased at a saturable-absorber amplification wavelength.  相似文献   

19.
Petkovsek R  Panjan I  Babnik A  Mozina J 《Ultrasonics》2006,44(Z1):e1191-e1194
This paper describes an analysis of pulsed lasers micro-drilling of different metals. Study focuses to an optodynamic phenomenon which appears as thermal effects induced by laser light pulses and leads to dynamic process manifested as ultrasonic shock waves propagating into the sample material. The shock waves are detected by a non-contact optical method by using arm compensated Michelson. Monitoring of the main parameters of the micro drilling such as material ablation rate and efficiency was realized by analysis of the optodynamic signals. The process is characterized by decreasing ablation rate that leads to the finite hole depth. The experimental part of study comprehends a comparison between various metals. In order to describe decreasing ablation rate a theoretical model based on the energy balance is proposed. It considers the energy/heat transfer from the laser beam to the material and predicts a decreasing drilling rate with an increasing number of successive laser pulses. According to the proposed model, the finite depth of the hole appears as a consequence of the increasing surface area through which the energy of the laser beam is conducted away to the material around the processed area. Decreasing ablation rate and the finite hole depth predicted by model were in good agreement with the experimental results.  相似文献   

20.
Jinyu Sun 《Optics Communications》2011,284(19):4745-4748
Noncollinear optical parametric up-conversion generation and amplification are realized in a thick β-barium borate (BBO) crystal, and a couple of visible femtosecond up-conversion laser pulses can be achieved by a femtosecond pulse at 800 nm as the pump sources. The theoretical and experimental results indicate that there exist phase-matching conditions for dual-color noncollinear parametric up-conversion generation and amplification, and their wavelengths can be tuned by rotating the BBO crystal. This parametric up-conversion generation and amplification can be attributed to three and five-wave mixing in a thick BBO crystal, and it shows the potential application on optical parametric chirped pulse amplification (OPCPA) to generate multi-color ultraviolet or visible femtosecond laser pulses pumped directly by femtosecond fundamental laser pulses without frequency-doubling or tripling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号