首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pd/C catalysts exhibit remarkable supplier-dependent difference in catalyst activity and property. Some commercial Pd/C catalysts are quite acidic. Although a TES ether cleavage reaction using 10% Pd/C in the absence of hydrogen was quite recently published, we could conclude it was only an acid, released from the catalyst, catalyzed solvolysis, and hydrogen is essential for the actual 10% Pd/C-catalyzed cleavage of a TES ether.  相似文献   

2.
Recently we have reported undesirable and frequent deprotection of the TBDMS protective group of a variety of hydroxyl functions occurred under neutral and mild hydrogenation conditions using 10% Pd/C in MeOH. The deprotection of silyl ethers is susceptible to significant solvent effect. TBDMS and TES protecting groups were selectively cleaved in the presence of acid-sensitive functional groups such as TIPS ether, TBDPS ether and dimethyl acetal under hydrogenation condition using 10% Pd/C in MeOH. In contrast, chemoselective hydrogenation of reducible functional groups such as acetylene, olefin and benzyl ether, proceeds in the presence of TBDMS or TES ethers in AcOEt or MeCN.  相似文献   

3.
[reaction: see text] A simple procedure for the cleavage of triethylsilyl (TES) ethers in the presence of 10 wt % Pd/C in methanol or 95% ethanol is reported. This method allows selective removal of alkyl TES ethers in the presence of aromatic TES ethers or tert-butyldimethylsilyl (TBS) protecting groups.  相似文献   

4.
The cleavage of propargyl, allyl, benzyl, and PMB ethers by Pd(OH)2/C can be tuned in that order, by varying the reaction conditions. Other moieties such as C-C double bonds, esters, trityl ether, p-bromo and p-nitrobenzyl ethers are stable to these reaction conditions. Cleavage of allyl ethers can be made catalytic by using 1:1 mixture of Pd(OH)2/C and Pd/C. The synthetic potential of the selective ether cleaving ability of Pd(OH)2/C, essentially under neutral conditions, has been demonstrated by an efficient synthesis of a precursor for the preparation of an inositol pyrophosphate derivative.  相似文献   

5.
Aniline–terephthalaldehyde resin p-toluenesulfonic acid (ATRT) salt was easily prepared by the reaction of aniline with 1.25 equiv of terephthalaldehyde in the presence of 1.0 equiv of p-toluenesulfonic acid at 75 °C for 24 h in EtOH. ATRT efficiently catalyzed the tetrahydropyranylation of alcohols and deprotection of tetrahydropyranyl (THP), triethylsilyl (TES), and tert-butyldimethylsilyl (TBDMS) ethers. Deprotection of dodecyl THP ether and dodecyl TBDMS ether catalyzed by ATRT proceeded faster than those by pyridinium p-toluenesulfonate (PPTS). ATRT was reused without significant loss of activities.  相似文献   

6.
Benzyl ethers, ketals and orthoformates were cleaved with Pd(OH)2/C in methanol, to generate the corresponding alcohol; carboxylic acid esters were stable under these reaction conditions. Pd(OH)2/C in methanol was used for the deprotection of hydroxyl groups during the preparation of sequoyitol via myo-inositol orthobenzoate. This method of deprotection has the potential to be useful in the synthesis of different classes of organic compounds since the reaction conditions do not involve strong acids, bases or hydrogen.  相似文献   

7.
Thiolate anions have been generated in a "demand-based" fashion under virtually neutral conditions for chemoselective deprotection of aryl alkyl ethers. Solvents play the critical role in making the reaction effective and should have high values of epsilon (>30), molecular polarizabilities (>10), and DN (>27) and low values of AN (<14). However, it is the combined effect of all of these physical properties that make a particular solvent effective. The reaction rates of cleavage of various aryl alkyl ethers are dependent on the steric crowding around the O-alkyl carbon and follow the order propargyl approximately allyl approximately benzyl > methyl > ethyl. Electron-withdrawing substituents increase the rate of ether cleavage reaction. The influence of the steric and electronic factors have been successfully exploited for selective deprotection of aryl alkyl ethers during inter- and intramolecular competitions.  相似文献   

8.
Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.  相似文献   

9.
The solvent-free and solid-phase hydrogenation of various reducible functionalities was efficiently catalyzed by heterogeneous palladium on carbon (Pd/C) under ambient hydrogen pressure and temperature. The Pd/C-catalyzed Suzuki-Miyaura coupling reaction between solid aryl bromides and solid arylboronic acids to generate the corresponding solid biaryls was also achieved under the totally solid-phase conditions.  相似文献   

10.
A mild method for the deprotection of THP ethers catalyzed by iron(III) tosylate (2.0 mol %) in CH3OH has been developed. Iron(III) tosylate, Fe(OTs)3·6H2O, is a commercially available solid that is inexpensive, noncorrosive, and easy to handle. The room temperature reaction conditions make this method attractive for deprotection of a range of THP ethers.  相似文献   

11.
Sn(IV)Cl4 catalyst provided a rapid and efficient deprotection method for the phenolic THP and MOM ethers and sequel intramolecular Friedel–Crafts alkylation reaction of THP and MOM protected chalcone epoxides under mild conditions. The reaction took 2–3 min to give the products in excellent yield (90–98%) at 0 °C without affecting the other functional groups.  相似文献   

12.
A method for the rapid, safe hydrogenation of alkenes and deprotection of benzyl ethers and carboxybenzyl amides is described using catalytic transfer hydrogenation under microwave heating conditions. Commonly available Pd/C catalyst is extremely effective with 1,4-cyclohexadiene as the hydrogen transfer source. In general, the reactions are complete within five minutes at 100 °C.  相似文献   

13.
A simple, mild and efficient method for deprotection of acetonides in the presence of molecular iodine is described. Acid labile protecting groups such as PMB, OMe, OBn, allyl and propargyl are compatible with the reaction conditions, while TBS, TBDPS, TMS and THP ethers were unstable under the same conditions.  相似文献   

14.
An efficient, eight-step synthesis of L-rhodinosyl acetate derivative 3 is described. The synthesis originates from methyl (S)-lactate and involves a highly stereoselective, chelate-controlled addition of allyltributylstannane to the lactaldehyde derivative 7. The beta-anomeric configuration of 3 was established with high selectivity by acetylation of the pyranose precursor with Ac(2)O and Et(3)N in CH(2)Cl(2). Preliminary studies of glycosidation reactions of 3 and L-rhodinosyl acetate 10 containing a 3-O-TES ether revealed that these compounds are highly reactive glycosidating agents and that trialkylsilyl triflates are effective glycosylation promoters. The best conditions for reactions with 15 as the acceptor involved use of diethyl ether as the reaction solvent and 0.2 equiv of TES-OTf at -78 degrees C. However, the TES ether protecting group of 10 proved to be too labile under these reaction conditions, and mixtures of 16a, 17, and 18a are obtained in reactions of 10 and 15. Disaccharide 17 arises via in situ cleavage of the TES ether of disaccharide 16a, while trisaccharide 18a results from a glycosidation of in situ generated 17 (or of 16a itself) with a second equivalent of 10. These problems were largely suppressed by using 3 with a 3-O-TBS ether protecting group as the glycosyl donor and 0.2 equiv of TES-OTf as the reaction promoter. Attempts to selectively glycosylate the C(3)-OH of diol acceptors 20 or 28 gave a 70:30 mixture of 21 and 22 in the reaction of 20 and a 43:27:30 mixture of regioisomeric trisaccharides 29 and 30 and tetrasaccharide 31 from the glycosidation reaction of 28. However, excellent results were obtained in the glycosidation of differentially protected disaccharide 34 using 1.5 equiv of 3 and 0.05 equiv of TBS-OTf in CH(2)Cl(2) at -78 degrees C. The latter step is an important transformation in the recently reported synthesis of the landomycin A hexasaccharide unit.  相似文献   

15.
The regioselective ring opening of pyranosidic 4,6-p-methoxybenzylidene acetals with BH(3)/Bu(2)BOTf in THF can be tuned by adjusting the reaction temperature and reagent concentrations. Reductive cleavage at 0 degrees C resulted in the exclusive formation of 4-O-p-methoxybenzyl (PMB) ethers, whereas reaction at -78 degrees C produced 6-O-PMB ethers in high yields. The latter condition was observed to be compatible with a variety of acid-sensitive functional groups, including allyl and enol ethers. The presence of water does not interfere with reductive ring opening and may contribute toward in situ generation of H(+) as a catalyst for 6-O-PMB ether formation. Reductive cleavage under rigorously aprotic conditions is greatly decelerated, and yields only the 4-O-PMB ether. The temperature-dependent reductive cleavage of the 4,6-acetal can be described in terms of kinetic versus thermodynamic control: Lewis-acid coordination of the more accessible O-6 is favored at higher temperatures, whereas protonation of the more basic but sterically encumbered O-4 predominates at low temperatures.  相似文献   

16.
Wu Y  Huang JH  Shen X  Hu Q  Tang CJ  Li L 《Organic letters》2002,4(13):2141-2144
[reaction: see text] In DMSO cleavage of triethylsilyl (TES) ethers by o-iodoxybenzoic acid (IBX) was significantly faster than cleavage of tert-butyldimethylsilyl (TBS) ethers or further oxidation into carbonyl compounds. In most cases, TES protecting groups could be removed in good to excellent yields within 1 h, whereas similar TBS protecting groups remained intact under the same conditions. The procedure also could be adapted for direct one-pot conversion of TES ethers into carbonyl compounds.  相似文献   

17.
The efficient deprotection of several acetals, dithioacetals, and tetrahydropyranyl (THP) ethers under ambient conditions, using chloral hydrate in hexane, is described. Excellent yields were realized for a wide range of both aliphatic and aromatic substrates. The method is characterized by mild conditions (room temperatures or below), simple workup, and the ready availability of chloral hydrate. High chemoselectivity was also observed in the deprotection, acetonides, esters, and amides being unaffected under the reaction conditions. Products were generally purified chromatographically and identified spectrally. These results constitute a novel addition to current methodology involving a widely employed deprotection tactic in organic synthesis. It seems likely that the mechanism of the reaction involves adsorption of the substrate on the surface of the sparingly soluble chloral hydrate.  相似文献   

18.
When acetals such as MOM ethers, MEM ethers, and THP ethers were heated in ethylene glycol or propylene glycol, solvolysis proceeded smoothly to produce alcohols in excellent yield. This reaction is a very promising method for chemoselective deprotection of acetal type protecting groups.  相似文献   

19.
The tin(iv) bromide promoted reaction of 7-hydroxy-7-phenylhept-2-enyl(tributyl)stannane 11 with benzaldehyde gave a mixture of the epimeric 1,8-diphenyloct-3-ene-1,8-diols 12 and so indirect methods were developed for aliphatic 1,8-stereocontrol to complete diastereoselective syntheses of (±)-patulolide C 1 and (±)-epipatulolide C 40. (5Z)-3,7-syn-7-(2-Trimethylsilylethoxy)methoxyocta-1,5-dien-3-ol 17 was prepared from the tin(iv) chloride promoted reaction of 4-(2-trimethylsilylethoxy)methoxypent-2-enyl(tributyl)stannane 16 with acrolein (1,5-syn?:?1,5-anti = 96?:?4). An Ireland-Claisen rearrangement of the corresponding benzoyloxyacetate 21 with in situ esterification of the resulting acid using trimethylsilyldiazomethane gave methyl (4E,7Z)-2,9-anti-2-benzyloxy-9-(2-trimethylsilylethoxy)methoxydeca-4,7-dienoate 22 together with 10-15% of its 2,9-syn-epimer 26, the 2,9-syn-?:?2,9-anti-ratio depending on the conditions used. An 88?:?12 mixture of esters was taken through to the tert-butyldiphenylsilyl ether 38 of (±)-patulolide C 1 together with 6% of its epimer 39, by reduction, a Wittig homologation and deprotection/macrocyclisation. Following separation of the epimeric silyl ethers, deprotection of the major epimer 38 gave (±)-patulolide C 1. The success of 2,3-Wittig rearrangements of allyl ethers prepared from (5Z)-3,7-syn-7-(2-trimethylsilylethoxy)methoxyocta-1,5-dien-3-ol 17 was dependent on the substituents on the allyl ether. Best results were obtained using the pentadienyl ether 56 and the cinnamyl ether 49 that rearranged with >90?:?10 stereoselectivity in favour of (1E,5E,8Z)-3,10-syn-1-phenyl-10-(2-trimethylsilylethoxy)methoxyundeca-1,5,8-trien-3-ol 50. This product was taken through to the separable silyl ethers 38 and 39, ratio 7?:?93 by regioselective epoxidation and alkene reduction using diimide, followed by deoxygenation, ozonolysis, a Wittig homologation and selective deprotection/macrocyclisation. Deprotection of the major epimer 39 gave (±)-epipatulolide C 40.  相似文献   

20.
The spirastrellolides are a novel family of structurally unprecedented marine macrolides which show promising anticancer properties due to their potent inhibition of protein phosphatase 2A. In the preceding paper, a modular strategy for the synthesis of spirastellolide A methyl ester which allowed for the initial stereochemical uncertainties was outlined, together with the synthesis of a series of suitably functionalised fragments. In this paper, the realisation of this synthesis is described. Two alternative coupling strategies were explored for elaborating the C26-C40 DEF bis-spiroacetal fragment: a modified Julia olefination of a C26 aldehyde with a C17-C25 sulfone, and a Suzuki coupling of a C25 trialkylborane with a C17-C24 vinyl iodide, which also required the development of a double hydroboration reaction to install the C23/C24 stereocentres. The latter proved a significantly superior strategy, and was fully optimised to provide a C17 aldehyde which was coupled with a C1-C16 alkyne fragment to afford the C1-C40 carbon framework. The BC spiroacetal was then installed within this advanced intermediate by oxidative cleavage of two PMB ethers with spontaneous spiroacetalisation, which also led to unanticipated deprotection of the C23 TES ether. The ensuing truncated seco-acid was cyclised in high yield to construct the 38-membered macrolactone under Yamaguchi macrolactonisation conditions, suggesting favourable conformational pre-organisation. Exhaustive desilylation provided a crystalline macrocyclic pentaol, revealing much about the likely conformation of the macrolactone in solution. Attachment of the remainder of the side chain proved challenging, potentially due to steric hindrance by this macrocycle; an olefin cross-metathesis to install an electrophilic allylic carbonate and subsequent π-allyl Stille coupling with a C43-C47 stannane achieved this goal. Global deprotection completed the first total synthesis of (+)-spirastrellolide A methyl ester which, following detailed NMR correlation with an authentic sample, validated the full configurational assignment. A series of simplified analogues of spirastrellolide incorporating the C26-C47 region were also prepared by π-allyl Stille coupling reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号