首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The metalloporphyrin 5,10,15,20-tetraphenylporphyrinatoiron(III) chloride shows catalytic activity for reduction of 3,4-dichloropropionanilide, the active ingredient of the herbicide Propanil. An amperometric sensor can therefore be constructed by coating the porphyrin catalyst as a thin layer on a glassy carbon electrode. The sensor provides reproducible responses at low concentrations with a lower detection limit (S/N = 3) of 8 × 10−5 M. The useful lifetime of the sensor is about seven weeks.  相似文献   

2.
3.
A novel and highly sensitive colorimetric sensor array was developed for the detection and identification of breath volatile organic compounds(VOCs) of patients with lung cancer.Employing dimeric metalloporphyrins,metallosalphen complexes,and chemically responsive dyes as the sensing elements,the developed sensor array of artificial nose shows a unique pattern of colorific changes upon its exposure to eight less-reactive VOCs and their mixture gas at a concentration of 735 nmol/L within 3 min.Potential of quantitative analysis of VOCs samples was proved.A good linear relationship of 490-3675 nmol/L was obtained for benzene vapor with a detection limit of 49 nmol/L(S/N=3).Data analysis was carried out by Hierarchical cluster analysis(HCA) and principal component analysis(PCA).Each category of breath VOCs clusters together in the PCA score plot.No errors in classification by HCA were observed in 45 trials.Additionaly,the colorimetric sensor array showed good reproducibility under the cyclic sensing experiments.These results demonstrate that the developed colorimetric artificial nose system is an excellent sensing platform for the identification and quantitative analysis of breath VOCs of patients with lung cancer.  相似文献   

4.
The sensitivity and precision of headspace solid-phase micro extraction (HS-SPME) at an analyte solution temperature (T as) of +35 °C and a fiber temperature (T fiber) of +5 °C were compared with those for HS-SPME at T as and T fiber of −20 °C for analysis of the volatile organic compounds benzene, 1,1,1-trichloroethane, trichloroethylene, toluene, o-xylene, ethylbenzene, m/p-xylene, and tetrachloroethylene in water samples. The effect of simultaneous fiber cooling and analyte solution freezing during extraction was studied. The compounds are of different hydrophobicity, with octanol/water partition coefficients (Kow) ranging from 126 and 2511. During a first set of experiments the polydimethylsiloxane (PDMS) SPME fiber was cooled to +5 °C with simultaneous heating of the aqueous analyte solution to +35 °C. During a second set of experiments, both SPME fiber holder and samples were placed in a deep freezer maintained at −20 °C for a total extraction time of 30 min. After approximately 2 min the analyte solution in the vial began to freeze from the side inwards and from the bottom upwards. After approximately 30 min the solution was completely frozen. Analysis of VOC was performed by coupling HS-SPME to gas chromatography-mass spectrometry (GC-MS). In general, i.e. except for tetrachloroethylene, the sensitivity of HS-SPME increased with increasing compound hydrophobicity at both analyte solution and fiber temperatures. At T as of +35 °C and T fiber of +5 °C detection limits of HS-SPME were 0.5 μg L−1 for benzene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, 0.125 μg L−1 for toluene, and 0.025 μg L−1 for ethylbenzene, m/p-xylene, and o-xylene. In the experiments with T as and T fiber of −20 °C, detection limits were reduced for compounds of low hydrophobicity (Kow<501), for example benzene, toluene, 1,1,1-trichloroethane, and trichloroethylene. In the concentration range 0.5–62.5 μg L−1, the sensitivity of HS-SPME was enhanced by a factor of approximately two for all compounds by performing the extraction at −20 °C. A possible explanation is that freezing of the water sample results in higher concentration of the target compounds in the residual liquid phase and gas phase (freezing-out), combined with enhanced adsorption of the compounds by the cooled fiber. The precision of HS-SPME, expressed as the relative standard deviation and the linearity of the regression lines, is increased for more hydrophobic compounds (Kow>501) by simultaneous direct fiber cooling and freezing of analyte solution. Background contamination during analysis is reduced significantly by avoiding the use of organic solvents.  相似文献   

5.
The relationship between chemical concentrations (gas chromatography–mass spectrometry analysis) and odour concentrations (olfactometry) was studied for biofilter emissions from four aerobic vegetable, fruit and garden waste (VFG) composting plants and one animal rendering plant. For the VFG composting plants, the study revealed a good linear relationship of the odour concentration with the total volatile organic compounds (VOC) concentration (R2=0.97, n=16) as well as with the concentration of esters and ketones (R2=0.9, n=19). For biofilter emissions of the animal rendering plant, the total VOC concentration was a poor estimator for odour concentration. However, for this type of odour, concentrations of organic sulphur containing compounds correlated well with odour concentrations (R2=0.94, n=8). The results of the study also showed that the relationship between chemical and odour concentrations is specific for each type of odour and cannot be generalized.  相似文献   

6.
Breath analysis constitutes a promising tool in clinical and analytical fields due to its high potential for non-invasive diagnostics of metabolic disorders and monitoring of disease status. An optical fiber (OF) sensor has been developed for determination of volatile organic compounds (ethane, pentane, heptane, octane, decane, benzene, toluene and styrene) in human breath for clinical diagnosis.The analytical system developed showed a high performance for breath analysis, inferred for the analytical signal intensity and stability, linear range, and detection limits ranging from 0.8 pmol L−1, for heptane, and to 9.5 pmol L−1, for decane. The OF sensor also showed advantageous features of near real-time response and low instrumentation costs, besides showing an analytical performance equivalent to the breath analysis by gas chromatography-mass spectrometry (GC-MS), used as the reference method.  相似文献   

7.
Traditional simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) techniques were compared for their effectiveness in the extraction of volatile flavor compounds from various mustard paste samples. Each method was used to evaluate the responses of some analytes from real samples and calibration standards in order to provide sensitivity comparisons between the two techniques. Experimental results showed traditional SDE lacked the sensitivity needed to evaluate certain flavor volatiles, such as 1,2-propanediol. Dramatic improvements in the extraction ability of the SPME fibers over the traditional SDE method were noted. Different SPME fibers were investigated to determine the selectivity of the various fibers to the different flavor compounds present in the mustard paste samples. Parameters that might affect the SPME, such as the duration of absorption and desorption, temperature of extraction, and the polarity and structure of the fiber were investigated. Of the various fibers investigated, the PDMS–DVB fiber proved to be the most desirable for these analytes.  相似文献   

8.
The determination of volatile organic compounds (VOC) species and concentrations are important for the evaluation of indoor air quality. Numerous methods exist for the determination of levels of both VOC and TVOC (total volatile organic compounds). These include the use of direct-reading instruments as well as gas chromatographic techniques. The benefits and drawbacks of the various methods are well known, and none provide precise measurement of the complex VOC mixtures that constitute TVOC in indoor air. A specific approach for TVOC measurement has been proposed in Europe in ECA-report no.19 to overcome these shortcomings. On this basis a practical analytical method was developed and applied to emission test chamber studies. Special focus was required on compounds of high volatility and the preparation of calibration standards.  相似文献   

9.
A sensor array system consisting of five quartz crystal microbalance (QCM) sensors (four for measuring and one for reference) and an artificial neural network (ANN) method is presented for on-line detection of volatile organic compounds. Three ionic liquids, 1-butyl-3-methylimidazolium chloride (C4mimCl), 1-butyl-3-methylimidazolium hexafluorophosphate (C4mimPF6), 1-dedocyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C4mimNTf2), and silicone oil II, which is widely used as gas chromatographic stationary phase, have been selected as sensitive coatings on the quartz surface allowing the sensor array effective to identify chemical vapors, such as toluene, ethanol, acetone and dichloromethane. The success rate for the qualitative recognition reached 100%. Quantitative analysis has also been investigated, within the concentration range of 0.6-6.1 mg/L for toluene, 0.9-7.5 mg/L for ethanol, 2.8-117 mg/L for dichloromethane, and 0.7-38 mg/L for acetone, with a prediction error lower than 8%.  相似文献   

10.
电子鼻测定植物挥发性有机物方法研究   总被引:2,自引:0,他引:2  
建立了电子鼻技术(GC/SAW)快速实时检测植物挥发性有机物(BVOCS)的分析方法。考察了检测器温度、进样温度、柱温、升温速率等因素的影响,确定了电子鼻技术分析BVOCS的最佳条件为:检测器温度60℃、进样口温度100℃、柱温40~145℃(10℃/s)、阀温145℃、预浓缩管250℃、载气流速3mL/min。在上述条件下,测得不同时间(日内、日间)α-蒎烯和异戊二烯分别在0.027~8.580mg·L-1、0.425~68.100mg·L-1范围内线性良好;α-蒎烯和异戊二烯的回收率分别在90.74%~107.41%和91.29%~102.88%之间;相对标准偏差(RSD)均小于5%;检测限在0.2~1.0μg·L-1内。  相似文献   

11.
23种挥发性有机化合物在3种吸附剂上漏出容量的测定评价   总被引:4,自引:0,他引:4  
采用吸附热解吸-气相色谱-质谱法对23种挥发性有机化合物Chromosorb 106、Tenax TA、Tenax TG等3种吸附剂上漏出容量进行了测定。根据实验结果确定了不同的化合物应选择不同的吸附剂及相应的采样体积。结果表明,Chromosorb 106可较好地吸附低沸点的挥发性有机化合物,Tenax TA、Tenax TG均可用于沸点较高的挥发笥有机化合物吸附,这对测定大气中的有机化合物含量采样有一定的参考价值。  相似文献   

12.
We synthesized and tested four different monolayer protected gold nanoclusters (MPCs) as chemically selective interfaces for an organic vapor sensor array. The ligands chosen for capping the nano-Au particles and for selective organic vapor sorption were octanethiol, 2-naphthalenethiol, 2-benzothiazolethiol and 4-methoxythiolphenol. The same set of gold nanoclusters were tested on two different types of sensor platforms, a chemiresistor (CR) and a quartz crystal microbalance (QCM). The sensing properties of both sensor arrays were investigated with 10 organic vapors of various functional groups. Vapor sensing selectivity, dominated by the shell ligand structure of MPC, was demonstrated. The sensitivities of MPC coated CR are better than those of QCM sensors coated with the same material. The average CR/QCM amplification factors are range from 1.9 for 4-methoxythiolphenol MPC to 16.9 for octanethiol MPC. These differences in amplification factors indicate the functional group specific mechanisms for each vapor-MPC pair. The shell penetration mechanism of hydrogen-bonding vapor molecules into the 2-benzothiazolethiol capped MPC reduced the CR/QCM amplification factors. Strong attraction between MPC shell ligands can also reduce the magnitude of resistance changes during vapor sorption.  相似文献   

13.
A series of ubiquitously occurring saturated and monounsaturated six-carbon aldehydes, alcohols and esters thereof is summarised as ‘green leaf volatiles’ (GLVs). The present study gives a comprehensive data collection of retention indices of 35 GLVs on commonly used non-polar DB-5, mid-polar DB-1701, and polar DB-Wax stationary phases. Seventeen commercially not available compounds were synthesised. Thus, the present study allows reliable identification of most known GLV in natural plant volatile samples. Applications revealed the presence of several seldom reported GLVs in headspace samples of mechanically damaged plant leaves of Carpinus betulus and Fagus sylvatica.  相似文献   

14.
This work presents a method of gas mixtures discrimination. The principal concept of the method is to apply measurement data provided by a combination of sensors at single time point of their temporal response as input of the discrimination models. The pattern data combinations are selected for classes of target gases based on the criterion of 100% efficient discrimination. Combinations of sensors and time points, which provide pattern data combinations in course or repeated measurements, are encoded in the form of addresses. The designer of sensor system is responsible for their selection and they are included in the software of the final instrument. The study of the method involved the discrimination of gas mixtures composed of air and single chemical: hexane, ethanol, acetone, ethyl acetate and toluene. Two sensor arrays were utilized. Each consisted of six TGS sensors of the same type. The dynamic operation of sensors was employed. As an example the stop-flow mode was chosen. The work provides the evidence of the existence of sensor combinations and time points, which are successful in discrimination of studied classes of target gases. The persistence of addresses was discussed considering the ability of sensor array to recognize analytes, variability of repeated measurement results, number of repeated measurements and a twin sets of sensors. Altogether, the validity of the method was demonstrated.  相似文献   

15.
Gaca J  Wejnerowska G 《Talanta》2006,70(5):1044-1050
The simple, quick and effective methods for the analysis of epichlorohydrin (ECH) in water and sewage samples with the use of gas chromatography have been presented. From among all the methods developed, the procedures for monitoring drinking-water quality and the methods which allow the determination of epichlorohydrin in sewage samples have been selected.

The limits of ECH detection have been determined by direct aqueous injection (DAI) into the chromatographic column and an analysis with the application of a flame ionization detector (FID), a mass spectrometry detector (MS), an electron capture detector (ECD) and atomic emission detection (AED) detectors. The method allows the determination of ECH in water samples at the concentration level of 0.1 mg l−1. Moreover, the developed methods of water samples preparation for chromatographic analysis using the following extraction methods: headspace (HS), stripping with adsorption on solid phase, liquid–liquid extraction (LLE), solid phase extraction (SPE) and solid phase microextraction (SPME) have been evaluated. The limits of ECH detection for each procedure with the application of gas chromatography (GC) combined with various detectors have been determined and their statistical evaluation has been presented. The SPME method allowed us to determine ECH in water samples at the concentration levels of 1.0 ng l−1.

The results of studies on the choice of the selective methods allowing ECH analysis in sewage samples have been demonstrated. The applied SPME method was found to be a quick and effective technique to determine micro trace amounts of ECH in samples containing high amounts of various organic compounds.  相似文献   


16.
Standard gases are used for quality control and quality assurance, development of analysis methods and novel air sampling devices. The use of solid-phase microextraction (SPME) and other novel technologies for research in the area of air sampling and analysis requires systems/devices for reliable standard gas generation and sampling. In this paper we describe a new gas standard generating system for volatile organic compounds (VOCs) and semi-VOCs that was designed, built, and tested to facilitate fundamental and applications research with SPME. The system provided for the generation of a wide range of VOC/semi-VOC concentrations and mixing various standard gases, estimation of detection limits, testing the effects of sampling time, air temperature and relative humidity, testing the effects of air velocity and ozone on sampling/extractions. The system can be also used for calibrations of analytical instrumentation, quality control and quality assurance checks, and cross-validations of SPME with/and other sampling techniques.  相似文献   

17.
A highly enantioselective fluorescent sensor, containing benzylaminomethyl groups at 3,3′-position of 1,1′-bi-2-naphthol (BINOL), has been used to conduct the chiral recognition of α-amino acid derivatives. It is observed that one enantiomer of N-Boc-proline can increase the fluorescence intensity of the binaphthyl fluorophores by over 57-fold, while the other enantiomer can cause only sixfold fluorescence enhancement. Such unusually highly enantioselective response demonstrates that this sensor is potentially useful in the enantioselective recognition of amino acid derivatives.  相似文献   

18.
 Validation of analytical methods of well-characterised systems, such as are found in the pharmaceutical industry, is based on a series of experimental procedures to establish: selectivity, sensitivity, repeatability, reproducibility, linearity of calibration, detection limit and limit of determination, and robustness. It is argued that these headings become more difficult to apply as the complexity of the analysis increases. Analysis of environmental samples is given as an example. Modern methods of analysis that use arrays of sensors challenge validation. The output may be a classification rather than a concentration of analyte, it may have been established by imprecise methods such as the responses of human taste panels, and the state space of possible responses is too large to cover in any experimental-design procedure. Moreover the process of data analysis may be done by non-linear methods such as neural networks. Validation of systems that rely on computer software is well established. The combination of software validation with validation of the analytical responses of the hardware is the challenge for the analytical chemist. As with validation of automated equipment such as programmable logic controllers in the synthesis of pharmaceuticals, method developers may need to concentrate on the process of validation, as well as the minutiae of what is done.  相似文献   

19.
A relatively noninvasive method consisting of a face mask sampling device, solid-phase microextraction (SPME) fibers, and a gas chromatography-mass spectrometry (GC-MS) for the identification of volatile organic compounds (VOCs) in bovine breath was developed. Breath of three morbid steers with respiratory tract infections and three healthy steers were sampled seven times in 19 days for 15 min at each sampling. The breath VOCs adsorbed on the divinylbenzene (DVB)-Carboxen-polydimethyl siloxane (PDMS) 50/30 microm SPME fibers were transported to a laboratory GC-MS system for separation and identification with an in-house spectral library of standard chemicals. A total of 21 VOCs were detected, many of them for the first time in cattle breath. Statistical analyses using Chi-square test on the frequency of detection of each VOC in each group was performed. The presence of acetaldehyde (P < or = 0.05) and decanal (P < or = 0.10) were associated more with clinically morbid steers while methyl acetate, heptane, octanal, 2,3-butadione, hexanoic acid, and phenol were associated with healthy steers at P < or = 0.10. The results suggest that noninvasive heath screening using breath analyses could become a useful diagnostic tool for animals and humans.  相似文献   

20.
The essential oils from four samples of Teucrium lusitanicum and one sample of Teucrium algarbiensis, grown in Algarve (southern Portugal) were analyzed by gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). Seventy-one volatile compounds were identified. Major compounds of T. algarbiensis oil were alpha-pinene (8.3%), sabinene (7.2%), beta-pinene (10.2%), limonene (11.8%) and germacrene D (7.6%). Concerning T. lusitanicum, some quantitative differences were found with regards to the major constituents of the oils from four populations: alpha-pinene (0.8-8.5%), sabinene (2.1-9.6%), beta-pinene (2.5-11.9%), limonene (1.2-11.5%) and elemol (2.6-12.0%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号