首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis and spectral characterization of novel neutral and cationic organotin complexes with pyruvic acid thiosemicarbazone, H2pt (1), [SnPh2(pt)] (2), [SnMe2(Hpt)(H2O)]Cl (3) and [SnPh2(Hpt)(H2O)]Cl (4) are reported. The crystal structure of the complexes [SnPh2(pt)] (2) and [SnMe2(Hpt)(H2O)]Cl (3) have been solved by single-crystal X-ray diffraction. The crystal structure of complex 2 showed that the ligand is doubly deprotonated at the oxygen and amide nitrogen atoms and is coordinated to the SnPh2 fragment via two five-membered chelate rings. The monomers of 2 are linked through intermolecular hydrogen bonds of C−H–O type and through π−π intermolecular interactions. The crystal structure of [SnMe2(Hpt)(H2O)]Cl (3) showed that the ligand is mono-deprotonated at the oxygen atom and is coordinated to the SnMe2 fragment via two five-membered chelate rings. The counter ion chloride is participated in intermolecular hydrogen bonds. An extended network of intermolecular hydrogen bonds leads to aggregation and a supramolecular assembly. The IR and NMR spectroscopic data of the complexes are reported. The in vitro cytotoxic activity has been evaluated against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T-24 (bladder cancer cell line), A-549(non-small cell lung carcinoma) and a mouse L-929 (a fibroblast-like cell line cloned from strain L). The most active of all was found the diorganotin complex 2. The cytotoxic activity shown by these compounds against all these cancer cell lines indicates that coupling of 1 with R2Sn(IV) metal center result in metallic complexes with important biological properties and remarkable cytotoxic activity, since they are display IC50 values in a μM range the same or better to that of the antitumor drug cisplatin. Compound 2 is considered as agent with potential antitumor activity, and can therefore be candidate for further stages of screening in vitro and/or in vivo.  相似文献   

2.
Treatment of a titanium phosphinoamide, (Ph2PNtBu)2TiCl2 (1), with [CpRuCl]4 in THF at room temperature afforded a TiRu heterobimetallic complex, of which crystallographic study showed the molecular structure to be a six-membered dimetallacyclohexane, CpRu(μ-Cl)(Ph2PNtBu)2TiO (3). A boat conformation of the dimetallacycle leads to effective linking of the two metal centers by two phosphinoamide ligands, and bridging of a chlorine atom over the TiRu axis. The TiRu heterobimetallics were synthesized by the reaction of 1 with CpRu(COD)Cl or CpRu(TMEDA)Cl, whereas no reaction occurred between 1 and CpRu(PCy3)Cl. A primary product of this reaction would be a trichloride, CpRu(μ-Cl)(Ph2PNtBu)2TiCl2 (2). In fact, careful treatment of 1 with [CpRuCl]4 afforded 2 as the main product which was detected by NMR and ESI-MS spectra; 2 was converted to 3 in contact with 1 equivalent of water.  相似文献   

3.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

4.
Heating the five-coordinate trimethylstannyl complex, Os(SnMe3)Cl(CO)(PPh3)2, in solution with triphenylphosphine induces an ortho-stannylation of one phenyl group of a triphenylphosphine ligand and an ortho-metallation of another triphenylphosphine ligand, to produce the metallacyclic complexes, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2(C,P)-C6H4PPh2)(CO)(PPh3) (1) and Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2(C,P)-C6H4PPh2)(CO)(PPh3) (2), suggesting the possible intermediacy of a complex with a coordinated stannylene ligand. Spectroscopic data indicate that only one diastereomer of 1 is formed and crystal structure determination of 1 reveals that this is the diastereomer with chloride directed towards the CO ligand. Complex 2 is converted to 1 through a redistribution reaction with SnMe2Cl2. Heating the six-coordinate trimethylstannyl complex, Os(SnMe3)Cl(CO)2(PPh3)2, in solution produces the osmium(II) methyl complex, Os(Me)(SnMe2Cl)(CO)2(PPh3)2 (3), through an exchange of methyl and chloride groups on the tin and osmium. In this rearrangement, the relative locations of the two CO ligands and the two PPh3 ligands remains unchanged. However, when the six-coordinate trimethylstannyl complex, Os(SnMe3)Cl(CO)2(PPh3)2 is heated under CO, the same exchange reaction is observed but the mono-triphenylphosphine, tricarbonyl complex, Os(Me)(SnMe2Cl)(CO)3(PPh3) (4), is produced and here the SnMe2Cl ligand is located trans to the PPh3 ligand. Crystal structure determinations for 1, 2, 3, and 4 have been obtained.  相似文献   

5.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

6.
The dichloride complex Cp∗(Am)WCl2 (1, Am = [(iPrN)2CMe]) reacted with the primary silanes PhSiH3, (p-tolyl)SiH3, (3,5-xylyl)SiH3, and (C6F5)SiH3 to produce the W(VI) (silyl)trihydrides Cp∗(Am)W(H)3(SiHPhCl) (2), Cp∗(Am)W(H)3(SiHTolylCl) (3), Cp∗(Am)W(H)3(SiHXylylCl) (4), and Cp∗(Am)W(H)3[SiH(C6F5)Cl] (5). In an analogous manner, 1 reacted with PhSiH2Cl to give Cp∗(Am)W(H)3(SiPhCl2) (6). Complex 6 can alternatively be quantitatively produced from the reaction of 2 with Ph3CCl. NMR spectroscopic studies and X-ray crystallography reveal an interligand H?Si interaction between one W-H and the chlorosilyl group, which is further supported by DFT calculations.  相似文献   

7.
Jie Chen 《Tetrahedron》2008,64(37):8899-8906
An efficient electrophilic iodocyclization of alkylidenecyclopropyl ketones with N-iodosuccinimide (NIS) or I2 in aqueous CH3CN affording 3-oxabicyclo[3.1.0]hexan-2-ols is described. NIS is a better electrophilic iodocyclization reagent than I2. Four chiral centers were formed within one step. The stereochemistry was established by the X-ray diffraction studies of compounds 2e-2h, 2n, and 2c. It is quite interesting to observe that the substituent of the cyclopropane ring plays an important role in determining the relative stereochemistry at the 4-position: with R2 being an acyl or ester group a mixture of (1S,2R,4S,5R)-2 (major) and (1R,2R,4R,5R)-2 (minor) was formed with moderate selectivity while the reaction of the substrates with R2 being sulfonyl and p-methylphenylsulfonyl or R1 being phenyl afforded (1R,2R,4S,5S)-2 or (1S,2R,4S,5R)-2f as the only product. The reaction is general for a range of different substrates to afford the products in moderate to high yields.  相似文献   

8.
Two new half sandwich ruthenium complexes with 2-N-phenylamino-4-N-phenylimino-2-pentene (Ph2nacnac) ligands have been synthesized and characterized. Single crystal X-ray diffraction analysis reveals the monomeric, highly air sensitive complex CpRu(Ph2nacnac) (4) has a coordinatively unsaturated structure and the coordination environment around Ru(II) is effectively a triangle made up of Ct(Cp)–N(1)–N(2). An air stable complex CpRu(Ph2nacnac)(CO) (5) is prepared by reaction of 4 with CO, and has a pseudo-tetrahedral geometry around the Ru(II) center, made up of Ct(Cp)–N(1)–N(2)–C(28).  相似文献   

9.
The diarylamido-based PNP pincer ligand can be used successfully for support of organometallic Hf complexes (PNP = [(4-Me-2-iPr2P-C6H3)2N]). (PNP)HfCl3 (3) was prepared via reaction of (PNP)Li (2) with HfCl4(OEt2). Reactions of (PNP)HfCl3 with alkyl Grignards led to triple alkylation to produce (PNP)HfMe3 (4) with a small methyl or only double alkylation to give (PNP)Hf(CH2SiMe3)2Cl (5) with a larger alkyl. Structures of 3, 4, and 5 in the solid state were established by X-ray diffraction studies. Structures of the alkyl complexes 4 and 5 display remarkably irregular coordination environments about Hf, while in 3 it is approximately octahedral. Compound 4 was found to be thermally stable at 75 °C. On the other hand, thermolysis of 5 at similar conditions led to a mixture of products, the major one of which is believed to be a Hf alkylidene on the basis of in situ NMR spectroscopic observations (e.g., δ 248.2 ppm in the 13C{1H} NMR spectrum).  相似文献   

10.
The reaction between 1-boranyl-1,3,5-triaza-7-phosphaadamantane ligand N-B-PTA(BH3) and [CpRhCl(μ-Cl)]2 affords [CpRh{N-B-PTA(BH3)}Cl2] (3) or [CpRh{N-B-PTA(BH3)}2Cl]Cl (5) containing one or two P-bonded boronated PTA ligands. The hydride [CpRh{N-B-PTA(BH3)}H2] (8) was also obtained by reaction of 3 with NaBH4 and alternatively by direct hydroboration of [CpRh(PTA)Cl2] with excess NaBH4. Moderately slow hydrolysis of the N-boranyl rhodium complexes affords dihydrogen, H3BO3 and the corresponding PTA derivatives, including the water-soluble dihydride [CpRh(PTA)H2] (9). Finally, the reaction of 8 with electron poor alkynes gives the alkene complexes [CpRh{N-B-PTA(BH3)}(η2-CH2 = CHR)] (R = Ph, 10; C(O)OEt, 11) as a mixture of rotamers η2-coordinated to rhodium without affecting the N-BH3 moiety. The X-ray crystal structures of 3 and 10 were also obtained and are here discussed.  相似文献   

11.
Several (azido)iridium(III) complexes having a pentamethylcyclopentadienyl (Cp∗) group, [Cp∗Ir(N3)2(Ph2Ppy-κP)] (1: Ph2Ppy = 2-diphenylphosphinopyridine), [Cp∗Ir(N3)(Ph2Ppy-κP,κN)]CF3SO3 (2), [Cp∗Ir(N3)(dmpm)]PF6 (3: dmpm = bis(dimethylphosphino)methane), [Cp∗Ir(N3)(Ph2Pqn)]PF6··CH3OH (4··CH3OH: Ph2Pqn = 8-diphenylphosphinoquinoline), and [Cp∗Ir(N3)(pybim)] (5: Hpybim = 2-(2-pyridyl)benzimidazole) have been prepared and their crystal structures have been analyzed by X-ray diffraction. In complex 1, the Ph2Ppy ligand is only coordinated via the P atom (-κP), while in 2 it acts as a bidentate ligand through the P and N atoms (-κP,κN) to form a four-membered chelate ring. Comparing the structural parameters of the chelate ring in 2 with those of a similar five-membered chelate ring formed by Ph2Pqn in 4, it became apparent that the angular distortion in the Ph2Ppy-κP,κN ring was remarkable, although the Ir–P and Ir–N bonds in the Ph2Ppy-κP,κN ring were not elongated very much from the corresponding bonds in the Ph2Pqn-κP,κN ring. In the pybim complex 5, the five-membered chelate ring was coplanar with the pyridine and benzimidazolyl rings. With the related (azido)iridium(III) complexes analyzed previously, comparison of the structural parameters of the Ir–N3 moiety in [Cp∗IrIII(N3)(L–L′)]+/0 complexes reveals an anomalous feature of the 2,2′-bipyridyl (bpy) complex, [Cp∗Ir(N3)(bpy)]PF6.  相似文献   

12.
Reaction between Os(SnClMe2)(κ2-S2CNMe2)(CO)(PPh3)2 and either LiSnMe3 or KSnPh3 produces the distannyl complexes, Os(SnMe2SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) or Os(SnMe2SnPh3)(κ2-S2CNMe2)(CO)(PPh3)2 (3), respectively. Similarly, reaction between Os(SnClMe2)Cl(CO)2(PPh3)2 (6) and KSnPh3 produces the distannyl complex, Os(SnMe2SnPh3)Cl(CO)2(PPh3)2 (7). In the 119Sn NMR spectra of these stable osmium(II) distannyl complexes both the α-Sn and β-Sn atoms show well-resolved 119Sn-119Sn and 119Sn-117Sn coupling. Each of these three distannyl complexes can be selectively functionalised at the α-Sn atom by reaction with SnCl2Me2 giving Os(SnClMeSnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (2), Os(SnClMeSnPh3)(κ2-S2CNMe2)(CO)(PPh3)2 (4), and Os(SnClMeSnPh3)Cl(CO)2(PPh3)2 (8), respectively. Treatment of compounds 3 or 7 with iodine also cleaves one α-methyl group, selectively, to give Os(SnIMeSnPh3)(κ2-S2CNMe2)(CO)(PPh3)2 (5), or Os(SnIMeSnPh3)Cl(CO)2(PPh3)2 (9). Crystal structures for complexes 3 and 7 have been determined.  相似文献   

13.
The phosphorus ylides Ph3PCHC(O)C6H4R (R = 4-Me 1a, 4-Br 1b) react with PdCl2 in equimolar ratios to give the C,C-orthopalladated [Pd{CHP(C6H4)Ph2CO-C6H4-R)}(μ-Cl)]2 (R = 4-Me 2a, 4-Br 2b) which react with NaClO4/dppe, NaClO4/dppm, py and PPh3 to give the mononuclear derivatives [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppe-P,P′)[(ClO4) (R = 4-Me 3a, 4-Br 3b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppm-P,P′)[(ClO4 ( (R = 4-Me 4a, 4-Br 4b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}Cl(L)] (L = py, R = 4-Me 5a, 4-Br 5b, L = PPh3, R = 4-Me 6a, 4-Br 6b). The C, C-metalated chelate are demonstrated by an X-ray diffraction study of 3a and 4a. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR.  相似文献   

14.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

15.
Triorganotin chlorides Me3SnCl and (LNC)Me2SnCl (LNC = 2-[(dimethylamino)methyl]phenyl) reacted with potassium 1′-(diphenylphosphino)-1-ferrocenecarboxylate to give the respective carboxylates, Ph2PfcCO2SnMe3 (1) and Ph2PfcCO2SnMe2(LNC) (2; fc = ferrocene-1,1′-diyl), while the analogous triphenylstannyl derivative 3 resulted by condensation of Ph3SnOH with 1′-(diphenylphosphino)-1-ferrocenecarboxylic acid (Hdpf). Compounds 1 and 2 were smoothly oxidized with hydrogen peroxide or elemental sulfur to afford the corresponding P-chalcogen derivatives (P-oxides 1a and 2a; P-sulfides 1b and 2b). All compounds were characterized by multinuclear NMR, IR and mass spectroscopy, and the solid-state structures of 1, 1a, 2, 2a and 2b were determined by single-crystal X-ray diffraction. In the crystal structures of 1 and 1a, the tin atoms were found with distorted trigonal bipyramidal coordination environments completed by the CO or PO oxygens, respectively, from adjacent molecules, which in turn resulted in the formation of infinite linear assemblies. Tin atoms in 2, 2a, and 2b were found with trigonal bipyramidal surrounding as well, though with the donor substituent LNC assuming one of the axial donor sites. Compounds 2 and 2a crystallized as stoichiometric hydrates (2·1/2H2O, 2a·H2O), in which the water molecules served as hydrogen bond donors for the polar groups (CO and PO) and thus aided the formation of closed H-bonded assemblies; the structure of 2b was essentially molecular.  相似文献   

16.
The complexes [Rh(CO)(PPh3){Ph2PNP(O)Ph2-P,O}] (3), [Rh(CO)2{Ph2P(Se)NP(Se)Ph2-Se,Se′}] (5), and [Rh(CO)(PPh3){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (6), were synthesised by stepwise reactions of CO and PPh3 with [Rh(cod){Ph2PNP(O)Ph2-P,O}] (2) and [Rh(cod){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (4), respectively. The complexes 3, 5 and 6 have been studied by IR, as well as 1H and 31P NMR spectroscopy. The ν(CO) bands of complexes 3 and 6 appear at approximately 1960 cm−1, indicating high electron density at the RhI centre. The structure of complexes 3 and 6 has been determined by X-ray crystallography, and the 31P NMR chemical shifts have been resolved via low temperature NMR experiments. Both complexes exhibit square planar geometry around the metal centre, with the five-membered ring of complex 3 being almost planar, and the six-membered ring of complex 6 adopting a slightly distorted boat conformation. The C-O bond of the carbonyl ligand is relatively weak in both complexes, due to strong π-back donation from the electron rich RhI centre. The catalytic activity of the complexes 2, 3 and 6 in the hydroformylation of styrene has been investigated. Complexes 2 and 3 showed satisfactory catalytic properties, whereas complex 6 had effectively no catalytic activity.  相似文献   

17.
Photochemical reactions of the dinitrogen complex CpRe(CO)2N2 with tetrachloroethylene and trichloroethylene yield the coordination complexes CpRe(CO)22-tetrachloroethylene) (1) and CpRe(CO)22-trichloroethylene) (2), respectively. Complex 1 reacts thermally in polar organic solvents to produce the C-Cl bond activation product cis-CpRe(CO)2(C2Cl3)Cl (3). All complexes were isolated and characterized by IR, 1H and 13C NMR spectroscopies and mass spectrometry. Complex 3 was also characterized by X-ray crystallography.  相似文献   

18.
Interaction of [Ru(NO)Cl3(PPh3)2] with K[N(R2PS)2] in refluxing N,N-dimethylformamide afforded trans-[Ru(NO)Cl{N(R2PS)2}2] (R = Ph (1), Pri (2)). Reaction of [Ru(NO)Cl3(PPh3)2] with K[N(Ph2PSe)2] led to formation of a mixture of trans-[Ru(NO)Cl{N(Ph2PSe)2}2] (3) and trans-[Ru(NO)Cl{N(Ph2PSe)2}{Ph2P(Se)NPPh2}] (4). Reaction of Ru(NO)Cl3 · xH2O with K[N(Ph2PO)2] afforded cis-[Ru(NO)(Cl){N(Ph2PO)2}2] (5). Treatment of [Rh(NO)Cl2(PPh3)2] with K[N(R2PQ)2] gave Rh(NO){N(R2PQ)2}2] (R = Ph, Q = S (6) or Se (7); R = Pri, Q = S (8) or Se (9)). Protonation of 8 with HBF4 led to formation of trans-[Rh(NO)Cl{HN(Pri2PS)2}2][BF4]2 (10). X-ray diffraction studies revealed that the nitrosyl ligands in 2 and 4 are linear, whereas that in 9 is bent with the Rh–N–O bond angle of 125.7(3)°.  相似文献   

19.
The ferrocene-based bis(pyrazol-1-yl)borate ligands [Fc2Bpz2] ([2]) and [Fc2BpzPh2] ([2Ph]) have been prepared (Fc: ferrocenyl; pz: pyrazol-1-yl; pzPh: 3-phenylpyrazol-1-yl). Treatment of [2] and [2Ph] with MnCl2 in THF leads to the complexes [Fc2Bpz2Mn(THF)(μ-Cl)2Mn(THF)pz2BFc2] (3) and [Fc2BpzPh2Mn(THF)Cl] (3Ph), respectively, which have been structurally characterized by X-ray crystallography. While there is clearly no ferrocene-MnII π-coordination in the solid-state structure of 3, short MnII-C5H4 contacts are established in 3Ph (shortest Mn-C distances: 2.780(2) Å, 2.872(2) Å). The cyclic voltammograms of K[2Ph] and 3Ph show the first ferrocene/ferricinium redox wave of 3Ph to be shifted anodically by 0.60 V compared with the first FeII/FeIII transition of K[2Ph].  相似文献   

20.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号