首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Hydroboration of terminal and internal alkenes with N,N′,N″-trimethyl- and N,N′,N″-triethylborazine was carried out at 50 °C in the presence of a rhodium(I) catalyst. Addition of dppb or DPEphos (1 equiv.) to RhH(CO)(PPh3)3 gave the best catalyst for hydroboration of ethylene at 50 °C, resulting in a quantitative yield of B,B′,B″-triethyl-N,N′,N″-trimethylborazine. On the other hand, a complex prepared from (t-Bu)3P (4 equiv.) and [Rh(coe)2Cl]2 gave the best yield for hydroboration of terminal or internal alkenes.  相似文献   

2.
Yun-Hua Wang 《Tetrahedron》2010,66(35):7136-6130
A simply performed procedure for the [Rh(cod)Cl]2/cationic 2,2′-bipyridyl system-catalyzed [2+2+2] cycloaddition of α,ω-diynes with terminal and internal alkynes was achieved in water under air at 60 °C. The reaction proceeded smoothly with 1 equiv α,ω-diynes and 3 equiv alkynes in the presence of 20 mol % KOH for 1 h or 9 h, resulting in the formation of tri- and tetra-substituted benzene derivatives in moderate to high yields. After separation of the organic products by extraction, the residual aqueous solution could be reused for further reactions until complete degradation of its catalytic activity.  相似文献   

3.
We have found that the use of [Rh(cod)OH]2 associated with the water-soluble ligand m-TPPTC was highly efficient for the Rh-catalyzed arylation of alkynes. Aryl and alkyl alkynes were transformed to alkenes using 3 mol % rhodium catalyst and 2.5 equiv of boronic acid at 100 °C in a biphasic water/toluene system in 80-99% yield. The reaction was found to be totally regioselective for alkyl arylalkynes and alkyl silylated alkynes. The Rh/m-TPPTC system was for the first time recycled with no loss of the activity and with excellent purity of the desired alkene.  相似文献   

4.
Susmita Podder 《Tetrahedron》2007,63(37):9146-9152
A high-valent heterobimetallic catalyst namely [Ir2(COD)2(SnCl3)2(Cl)2(μ-Cl)2] (5 mol %), or dual catalyst system of [Ir(COD)Cl]2 (1 mol %) and SnCl4 (4 mol %), promotes the benzylation or allylation of arenes and heteroarenes using ethers as the alkylating agents. An electrophilic mechanism is proposed from a Hammett correlation.  相似文献   

5.
Biphen(OPR2) (with R: Ph, iPr, Cy) is reacted with [Rh(COE)2Cl]2. The corresponding μ-chloro-bridged dimers are received. An X-ray analysis of [Biphen(OPCy2)RhCl]2 is included. This compound shows a dynamic behaviour in solution, ascribed to a monomer/dimer equilibrium. The difference of the Biphen ligands to Milsteins PCP pincer-type ligand is shown. A catalytic cycle for biphenyl metathesis containing the coupling of oxidative addition and reductive elimination of the bridging C-C single bond in the biphenyl fragment using RhI/III complexes and the concept of chelating assistance was calculated using DFT (B3PW91/LANL2DZ). According to the calculations the activation energy of the oxidative addition is about 30 kcal/mol and for the reductive elimination about 19 kcal/mol. The fac-RhIII complex is by far the most stable compound, but the formation of it is kinetically strongly disfavoured. Pre-catalysts (COD)M(Ph-O-PR2) (M: Rh, Ir) were synthesized by pre-coordinating the phosphinite to the metal (X-ray structures of four such compounds included) followed by treatment with 2 equiv. of sec. BuLi (X-ray structures of two such compounds included). In case of Ir this synthesis is complicated by C-H activation (X-ray structure of (COD)Ir(H)(Cl)(2-Br-phenyl-O-(diisopropylphosphinite)) included) and fast oxidative addition of the Ph-C-Halide bond. For (COD)Ir(H)(Cl)(2-phenyl-O-(diisopropylphosphinite)) the C-H activation is reversible and thermodynamic parameters for the ring closure reaction were determined by VT-NMR measurement (ΔH = −21.1 ± 0.5 kJ/mol, ΔS = −62.8 ± 1.7 J/(mol K)). The pre-catalysts were reacted with Biphen(OPR2) to enter the calculated catalytic cycle. With Rh as center metal this reaction works out cleanly to give new complexes with the three P-atoms coordinated to one Rh center. No hemi-labile character was found for these P-donors even at 105 °C in toluene. If (COD)Rh(2-phenyl-O-(diisopropylphosphinite)) is reacted with 2 equiv. of 2-iodo-phenyl-O-(diisopropylphosphinite) oxidative addition of one C-Iodo bond is observed and the corresponding mer-RhIII complex is received. Upon treatment with 2 equiv. of sec. BuLi the resulting product is(Biphen(OPiPr2))RhI(2-phenyl-O-(diisopropylphosphinite)) rather than mer-RhIII(2-phenyl-O-(diisopropylphosphinite))3. Reaction of [Rh(COD)Cl]2 with 3 equiv. of 2-bromo-phenyl-O-(diphenylphosphinite) shows a fast scrambling of the chlorine into all possible ortho positions of the phenolate rings in the final RhIII reaction product.  相似文献   

6.
Chloroquine base (CQ) reacts with [Ir(COD)Cl]2 and IrCl3 · 3H2O to yield of Ir(CQ)Cl(COD) (1) and Ir2Cl6(CQ) · 3H2O (2), respectively. Reaction of [Ir(COD)Cl]2 with CQ in the presence of NH4PF6 leaded to [Ir(CQ)(Solv)2]PF6 (3). The three new iridium–CQ complexes were characterized by a combination of elemental analysis, IR and NMR spectroscopies and evaluated in vitro against Plasmodium beghei. Comparison of the IC50 values obtained with the experimental compounds with that determined for chloroquine diphosphate indicated a higher activity for complex 2, while complexes 1 and 3 showed a similar and lower activity, respectively.  相似文献   

7.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

8.
Synthesis of enol and vinyl esters catalyzed by an iridium complex   总被引:1,自引:0,他引:1  
Enol and vinyl esters were successfully synthesized by the use of an iridium complex as a catalyst. The reaction of carboxylic acids with terminal alkynes in the presence of catalytic amounts of [Ir(cod)Cl]2 and Na2CO3 gave the corresponding 1-alkenyl esters. The addition of carboxylic acids to alkynes principally took place in the Markovnikov fashion. In addition, by the use of an Ir complex combined with NaOAc various vinyl esters were prepared through the transvinylation between carboxylic acids and vinyl acetate.  相似文献   

9.
Taking advantage of pendant tetrylene side-arms, stable unsaturated Si6 silicon clusters (siliconoids) with the benzpolarene motif (the energetic counterpart of benzene in silicon chemistry) are successfully employed as ligands towards Group 9 metals. The pronounced σ-donating properties of the tetrylene moieties allow for sequential oxidative addition and reductive elimination events without complete dissociation of the ligand at any stage. In this manner, either covalently linked or core-expanded metallasiliconoids are obtained. [Rh(CO)2Cl]2 inserts into an endohedral Si–Si bond of the silylene-functionalized hexasilabenzpolarene leading to an unprecedented coordination sphere of the Rh centre with five silicon atoms in the initial product, which is subsequentially converted to a simpler derivative under reconstruction of the Si6 benzpolarene motif. In the case of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) a similar Si–Si insertion leads to the contraction of the Si6 cluster core with concomitant transfer of a chlorine atom to a silicon vertex generating an exohedral chlorosilyl group. Metallasiliconoids are employed in the isomerization of terminal alkenes to 2-alkenes as a catalytic benchmark reaction, which proceeds with competitive selectivities and reaction rates in the case of iridium complexes.

Unprecedented metallasiliconoids are accessible from a silylene-substituted Si6 siliconoid and Group 9 metal fragments. The isomerization of terminal alkenes to 2-alkenes is competitively catalyzed by these species ( = silicon).  相似文献   

10.
3‐Ethynylthiophene (3ETh) was polymerized with Rh(I) complexes: [Rh(cod)acac], [Rh(nbd)acac], [Rh(cod)Cl]2, and [Rh(nbd)Cl]2 (cod is η22‐cycloocta‐1,5‐diene and nbd η22‐norborna‐2,5‐diene), used as homogeneous catalysts and with the last two complexes anchored on mesoporous polybenzimidazole (PBI) beads: [Rh(cod)Cl]2/PBI and [Rh(nbd)Cl]2/PBI used as heterogeneous catalysts. All tested catalyst systems give high‐cis poly(3ETh). In situ NMR study of homogeneous polymerizations induced with [Rh(cod)acac] and [Rh(nbd)acac] complexes has revealed: (i) a transformation of acac ligands into free acetylacetone (Hacac) occurring since the early stage of polymerization, which suggests that this reaction is part of the initiation, (ii) that the initiation is rather slow in both of these polymerization systems, and (iii) a release of cod ligand from [Rh(cod)acac] complex but no release of nbd ligand from [Rh(nbd)acac] complex during the polymerization. The stability of diene ligand binding to Rh‐atom in [Rh(diene)acac] catalysts remarkably affects only the molecular weight but not the yield of poly(3ETh). The heterogeneous catalyst systems also provide high‐cis poly(3ETh), which is of very low contamination with catalyst residues since a leaching of anchored Rh complexes is negligible. The course of heterogeneous polymerizations is somewhat affected by limitations arising from the diffusion of monomer inside catalyst beads. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2776–2787, 2008  相似文献   

11.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

12.
Bridged and unbridged N-heterocyclic carbene (NHC) ligands are metalated with [Ir/Rh(COD)2Cl]2 to give rhodium(I/III) and iridium(I) mono- and biscarbene substituted complexes. All complexes were characterized by spectroscopy, in addition [Ir(COD)(NHC)2][Cl,I] [COD = 1,5-cyclooctadiene, NHC =  1,3-dimethyl- or 1,3-dicyclohexylimidazolin-2-ylidene] (1, 4), and the biscarbene chelate complexes 12 [(η4-1,5-cyclooctadiene)(1,1′-di-n-butyl-3,3′-ethylene-diimidazolin-2,2′-diylidene)iridium(I) bromide] and 14 [(η4-1,5-cyclooctadiene)(1,1′-dimethyl-3,3′-o-xylylene-diimidazolin-2,2′-diylidene)iridium(I) bromide] were characterized by single crystal X-ray analysis. The relative σ-donor/π-acceptor qualities of various NHC ligands were examined and classified in monosubstituted NHC-Rh and NHC-Ir dicarbonyl complexes by means of IR spectroscopy. For the first time, bis(carbene) substituted iridium complexes were used as catalysts in the synthesis of arylboronic acids starting from pinacolborane and arene derivatives.  相似文献   

13.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

14.
New ruthenium phosphinooxazoline (PHOX) complexes were synthesized and applied in the Mukaiyama aldol reaction. Four ruthenium complexes of the general formula [RuCl2(PHOX)2] were synthesized from [RuCl2(dmso)4] and the corresponding PHOX ligands through thermal ligand exchange. Two of the complexes were characterized structurally. Achiral PHOX ligands gave the ruthenium complexes as single isomers, whereas chiral PHOX ligands gave a mixture of isomers and also some incomplete substitution. After activation by chloride abstraction, one of the new ruthenium complexes was applied as catalyst in the Mukaiyama aldol reaction to give silyl-protected β-hydroxyl alcohols in 74–92% isolated yields (room temperature, 18–24 h reaction time, 1 mol % catalyst loading).  相似文献   

15.
We found that the combination of [Ir(cod)Cl]2 and rac-BINAP served as an efficient catalyst for the [2+2+2] cycloaddition of 2,7-nonadiyne derivatives and related compounds with alkynyl ketones and alkynyl esters. The corresponding products were obtained in high yields under mild reaction conditions.  相似文献   

16.
The relatively inexpensive chiral monodentate phosphoramidite (S)-MONOPHOS may be used in combination with pyridines to prepare iridium complexes effective for catalysis of asymmetric imine hydrogenation with comparable enantioselectivity to some of those containing more costly chiral bidentate phosphines. [Ir(cod)((S)-MONOPHOS)(L)]BArF (cod = 1,5-cyclooctadiene; L = 3-methylisoquinoline, acridine, 2,6-lutidine, acetonitrile, or 2,3,3-trimethylindolenine; BArF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) are efficient catalysts for the asymmetric hydrogenation of 2,3,3-trimethylindolenine. An important observation is that the catalyst containing acridine is more enantioselective than the catalyst derived from 2,3,3-trimethylindolenine which suggests that the other N-donor ligands are not readily displaced by the substrate during the catalytic cycle.  相似文献   

17.
Iridium complexes containing quinoline-functionalized N-heterocyclic carbene (NHC) ligands have been synthesized by the transmetalation route from silver carbene precursors. The silver complexes undergo a facile reaction with [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) to yield a series of carbene complexes [(NHC)Ir(COD)Cl] (NHC = 3-methyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2a); 3-n-butyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2b); 3-benzyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2c); 1,3-di(8-quinolylmethyl)imidazole-2-ylidene (2d). The coordinated COD was replaced by carbon monoxide to yield the corresponding carbonyl species [(NHC)Ir(CO)2Cl] (3). Complexes 2 and 3 have been characterized by IR, ESI-MS, 1H and 13C NMR and elemental analyses. The molecular structures of complexes 2b and 2c have been confirmed by single-crystal X-ray diffraction. Two analogous Ir(I) complexes 5 and 6 with naphthalene-containing NHC have also been synthesized and characterized. These Ir(I) complexes in the current work have been proved to be active catalysts in the transfer hydrogenation of ketones to alcohols using 2-propanol as the hydrogen source.  相似文献   

18.
Efficient epoxidation of alkenes catalyzed by tetrakis(p-aminophenyl)porphyrinatomanganese(III) chloride, [Mn(TNH2PP)Cl], supported on graphene oxide nanosheets, is reported. The catalyst, [Mn(TNH2PP)Cl]@GO, was prepared by covalent attachment of amino groups of porphyrin to carboxylic acid groups of GO. This new heterogenized catalyst was characterized by ICP, FT-IR and diffuse reflectance UV–vis spectroscopies, scanning electron microscopy and transmission electron microscopy. This catalyst was applied as an efficient and reusable catalyst in the epoxidation of alkenes with NaIO4 at room temperature, in the presence of imidazole as axial ligand. The most noteworthy advantage of [Mn(TNH2PP)Cl]@GO is its high reusability in the oxidation reactions, in which the catalyst was reused several times without significant loss of its catalytic activity.  相似文献   

19.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

20.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号