首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

3.
Numerous drugs are carboxylic acid derivatives containing amino group, and hydrolysis reaction of these agents often generates toxic amines. Thus, the detection of amine impurity is of great importance in drug quality control of these amino group-containing ester and amide. A capillary electrophoresis method coupled with end-column electrochemiluminescent detection based on tris(2,2′-bipyridyl)ruthenium(II) system was proposed for the analysis of N,N-dimethyl ethanolamine (DMEA, the degradation product of meclophenoxate) in the presence of its precursor. Baseline separation of DMEA and meclophenoxate can be easily achieved under the selected conditions. DMEA can be assayed within 3 min over the concentration range of 5.0 × 10−8 to 3.0 × 10−6 mol L−1 with a detection limit of 2.0 × 10−8 mol L−1 at the signal-to-noise ratio of 3. The relative standard deviations of the signal intensity and the migration time were less than 5.3 and 2.5% for a standard sample containing 1.0 × 10−7 mol L−1 DMEA (n = 5), respectively. The presented method has been successfully applied for the profiling of DMEA resulting from the hydrolysis of meclophenoxate in commercial formulations. A primary stability investigation of meclophenoxate in aqueous solution was also carried out at different temperatures, and the results showed that the degradation of meclophenoxate accelerated at the higher temperature.  相似文献   

4.
Yoichi M.A Yamada 《Tetrahedron》2004,60(18):4087-4096
A novel catalyst PWAA, an assembled complex of phosphotungstic acid (H3PW12O40) and a non-cross-linked copolymer of N-isopropylacrylamide with an ammonium, was developed. It is an amphiphilic, cross-linked, and supramolecular insoluble complex and showed catalytic activity on oxidation with aqueous hydrogen peroxide. PWAA, used in 2.7×10−5-2.0×10−3 mol equiv., catalyzed oxidation of allylic alcohols, amines, and sulfides efficiently. The turnover number (TON) of PWAA reached up to 35,000. PWAA showed a good stability in organic/aqueous media and was reused three to five times.  相似文献   

5.
A novel voltammetric sensor for O,O-dimethyl-(2,4-dichlorophenoxyacetoxyl)(3′-nitrophenyl)methinephosphonate (Phi-NO2) based on molecularly imprinted polymer (MIP) film electrode is constructed by using sol-gel technology. The sensor responds linearly to Phi-NO2 over the concentration range of 2.0 × 10−5 to 1.0 × 10−8 mol L−1 and the detection limit is 1.0 × 10−9 mol L−1 (S/N = 3). This sensor provides an efficient way for eliminating interferences from coexisting substances in the solution. The high sensitivity, selectivity and stability of the sensor demonstrates its practical application for a simple and rapid determination of Phi-NO2 in cabbage samples.  相似文献   

6.
A method for determination of nine brominated phenols as environmental risk compounds was developed by on-line coupled capillary isotachophoresis and capillary zone electrophoresis (ITP–CZE). For ITP step, 1 × 10−2 mol L−1 hydrochloric acid with 3 × 10−2 mol L−1 ammediol pH 9.1 was used as the leading electrolyte, and 3 × 10−2 mol L−1 β-alanine with 2 × 10−2 mol L−1 sodium hydroxide pH 10.05 was used as the terminating electrolyte. As the background electrolyte for CZE separation, 2.5 × 10−2 mol L−1 β-alanine with 2.5 × 10−2 mol L−1 lysine pH 9.6 was used. All electrolytes contained 0.05% or 0.1% (m/v) hydroxyethylcellulose to suppress the electroosmotic flow. UV detection at wavelength 220 nm was used. Detection limits in order of tens of nmol L−1 were achieved. Good repeatability of migration times (less than 0.33% RSD) and good repeatability of peak areas (less than 7.19% RSD) at concentration level 5 × 10−8 mol L−1 were observed. Developed ITP–CZE method was applied to determination of brominated phenols in spiked tap and river water samples.  相似文献   

7.
High-performance liquid chromatography (HPLC) with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3 mL min−1 enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2 × 10−11 mol L−1 in simple aqueous solution. The limits of detection achieved with HPLC were 7 × 10−8 and 2 × 10−10 mol L−1 in urine and serum, respectively. The calibration range for FIA was between 5 × 10−9 and 1 × 10−6 mol L−1. The calibration ranges for HPLC were between 1 × 10−7-1 × 10−4 and 1 × 10−8-1 × 10−4 mol L−1 in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3 × 10−6 mol L−1 in urine and 7 × 10−7 mol L−1 in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.  相似文献   

8.
Gotardo MA  Gigante AC  Pezza L  Pezza HR 《Talanta》2004,64(2):361-365
In this report an analytical method to determine furosemide by using diffuse reflectance spectroscopy is presented. This study shows that this technique can give quantitative results using spot test analysis, particularly in the case of pharmaceuticals containing furosemide. The color spot test could be obtained by reaction between furosemide with p-dimethylaminocinnamaldehyde, in acid medium. This reaction produced a stable complex on filter paper after heating to 80 °C for 5 min. All reflectance measurements were carried out at 585 nm and the linear range was from 7.56×10−3 to 6.05×10−2 mol l−1, with a correlation coefficient of 0.999. The limit of detection was estimated to be 2.49×10−3 mol l−1 (R.S.D.=1.7%) and the effect of common excipients on the reflectance measurements was evaluated. The method was applied to determine furosemide in commercial brands of pharmaceuticals. The results obtained by the proposed method were favorably compared with those of the official method, showing for the first time ever that quantitative spot test analysis by diffuse reflectance could be successfully used to determine furosemide in tablets.  相似文献   

9.
A novel optical sensor based on a redox reaction for the determination of iodide has been developed. The optode membrane is constructed by immobilization of methyltrioctylammonium chloride on triacetylcellulose polymer. The exchange of chloride as counter ion with iodate in the membrane changes the color to yellow, when it is placed in acidic solution of iodide. The sensor can readily be regenerated by 0.1 mol L−1 NaOH in less than 15 s. The optode has a linear range of 3.94 × 10−6 to 5.51 × 10−5 mol L−1 of iodide ions with a limit of detection 7.44 × 10−7 mol L−1. The relative standard deviation for eight replicate measurements of 3.94 × 10−6 and 1.57 × 10−5 mol L−1 of iodide was 2.83 and 1.38%, respectively. The sensor was successfully applied to the determination of iodide in tablet, powdered milk and urine samples.  相似文献   

10.
A novel method of first derivative synchronous fluorescence was developed for the rapid simultaneous analysis of trace 1-hydroxypyrene (1-OHP), 1-naphthol (1-NAP), 2-naphthol (2-NAP), 9-hydroxyphenanthrene (9-OHPe) and 2-hydroxyfluorene (2-OHFlu) in human urine. Only one single scan was needed for quantitative determination of five compounds simultaneously when Δλ = 10 nm was chosen. In the optimal experimental conditions, there was a linear relationship between the fluorescence intensity and the concentration of 1-OHP, 1-NAP, 2-NAP, 9-OHPe and 2-OHFlu in the range of 1.75 × 10−9 to 4.50 × 10−6 mol L−1, 3.64 × 10−8 to 2.20 × 10−4 mol L−1, 8.18 × 10−9 to 1.20 × 10−4 mol L−1, 3.26 × 10−9 to 8.50 × 10−5 mol L−1 and 4.88 × 10−9 to 5.50 × 10−6 mol L−1, respectively. The limits of detection (LOD) were found to be 5.25 × 10−10 mol L−1 for 1-OHP, 1.10 × 10−8 mol L−1 for 1-NAP, 2.46 × 10−9 mol L−1 for 2-NAP, 9.77 × 10−10 mol L−1 for 9-OHPe and 1.46 × 10−9 mol L−1 for 2-OHFlu. The proposed method is reliable, selective and sensitive, and has been used successfully in the determination of traces of 1-OHP, 1-NAP, 2-NAP, 9-OHPe and 2-OHFlu in human urine samples, whose results were in good agreement with those gained by the HPLC method.  相似文献   

11.
This work investigated the chemiluminescent reaction of free chlorine with bis(2,4,6-(trichlorophenyl)oxalate) (TCPO) in the presence of 9,10-diphenylanthracene in acetonitrile/water medium, with analytical application for free chlorine in tap water. In the absence of free chlorine, the background signal increased with the pH and the chemiluminescence emission showed strong dependence with the sample acidity. A flow injection analysis system, for free chlorine determination, was developed. The linear range for free chlorine was (0.2-3.0)×10−5 mol l−1. Chloramine 1.0×10−5 mol l−1 and chlorite 1.0×10−6 mol l−1 also enhanced the chemiluminescence intensity.  相似文献   

12.
We report a low cost selective analytical method based on inner filter effect (IFE) for citrate-silver nanoparticle (cit-AgNP) detection, in which fluorescent amine-derivatized carbon dots (a-CDs) act as the donor and aggregated cit-AgNPs as the energy receptor. Carbon dots (CDs) were chemically modified with ethylenediamine (EDA) moieties via amidic linkage displaying an emission band at 440 nm. The presence of cit-AgNPs produces a remarkably quenching of a-CD fluorescence via IFE, since the free amine groups at CD surface induce the aggregation of cit-AgNPs accompany by a red-shifting of their characteristic plasmon absorption wavelength, which resulted in “turn-on” of the IFE-decreased in CD fluorescence. The proposed method, which involves the use of chelating agents for removal of metal ions interferences, exhibits a good linear correlation for detection of cit-AgNPs from 1.23 × 10−5 to 6.19 × 10−5 mol L−1, with limits of detection (LOD) and quantification (LOQ) of 5.17 × 10−6 and 1.72 × 10−5 mol L−1, respectively. This method demonstrates to be efficient and selective for the determination of cit-AgNPs in complex matrices such as cosmetic creams and reveals many advantages such as low cost, reusability, high sensitivity and non time-consuming compared with other traditional methods.  相似文献   

13.
A procedure for the determination of gallium by differential pulse adsorptive stripping voltammetry (DPADSV), using different complexing agents (ammonium pyrrolidine dithiocarbamate (APDC), pyrocatechol violet (PCV) and diethyldithiocarbamate (DDTC)), has been optimized. The selection of the experimental conditions was made using experimental design methodology. Under these conditions, the calibration was made and the detection limit was determined for each gallium-ligand complex. A robust regression method was applied which allowed the elimination of anomalous points. The detection limit, with α=β=0.05, for gallium-APDC complex was 5.0×10−8 mol dm−3, for gallium-PCV complex was 9.9×10−9 mol dm−3, and the lowest detection limit (1.3×10−9 mol dm−3) was obtained with DDTC. For this reason, DDTC was selected for the determination of the gallium concentration in a certificate sample and in a spiked tap water sample. The linear dynamic range for gallium-APDC complex was from 5.0×10−8 to 2.7×10−7 mol dm−3, for gallium-PCV complex was from 5.0×10−9 to 4.8×10−7 mol dm−3, and for gallium-DDTC complex was from 1.0×10−9 to 2.1×10−7 mol dm−3.  相似文献   

14.
In the present work, a novel method for immobilization of carbon nanotubes (CNTs) on the surface of graphite electrode was proposed. We further found that superoxide ion was electrogenerated on this CNTs-modified electrode, which can react with sulfide ion combing with a weak but fast electrogenerated chemiluminescence (ECL) emission, and this weak ECL signal could be enhanced by the oxidative products of rhodamine B. In addition, the rate constant of this electrochemical reaction k0 was investigated and confirmed that the speed of electrogenerating superoxide ion was in accordance with the subsequent fast CL reaction. Thus, the fast CL reaction of superoxide ion with target brought in the possibility of high selectivity based on time-resolved, relative to other interferences. Based on these findings, an excellently selective and highly sensitive ECL method for sulfide ion was developed. Under the optimum conditions, the enhancing ECL signals were linear with the sulfide ion concentration in the range from 6.0 × 10−10 to 1.0 × 10−8 mol L−1, and a 2.0 × 10−10 mol L−1 detection limits (3σ) was achieved. In addition, the proposed method was successfully used to detect sulfide ion in environmental water samples.  相似文献   

15.
The polyamines, octyl-[2-(2-octylamino-ethylamino)-ethyl]-amine (L1) and octyl-{2-[2-(2-octylamino-ethylamino)-ethylamino]-ethyl}-amine (L2), have been used as anion ionophores in PVC-based membrane ion-selective electrodes. Different electrodes were prepared containing L1, or L2, and o-nitrophenyl octyl ether (NPOE) or bis(2-ethylhexyl)sebacate (DOS) as plasticizers. The response of the electrodes was tested in two different buffers, HEPES-KOH (pH 7) and MES-KOH (pH 5.6). Electrodes containing L1 and L2 with NPOE (E1 and E2, respectively) showed a Nernstian response for thiocyanate with a good response time. The detection limit, linear range and slope for electrode E1 were 3.8 × 10−6 mol dm−3, 1 × 10−5 to 1 × 10−1 mol dm−3 and −57.2 mV decade−1 at pH 5.6 and 4.47 × 10−6 mol dm−3, 1.95 × 10−5 to 1 × 10−1 mol dm−3 and −58.1 mV decade−1 at pH 7.0. For electrode E2 the detection limit, linear range and slope found were 2.63 × 10−6 mol dm−3, 7.94 × 10−6 to 1 × 10−1 mol dm−3 and −58.5 mV decade−1 at pH 5.6 and 1.23 × 10−5 mol dm−3, 7.95 × 10−5 to 1 × 10−1 mol dm−3 and −46.0 mV decade−1 at pH 7. In contrast, electrodes containing DOS as plasticizers gave only response at pH 5.6 (detection limit, linear range and slope at pH 5.6 were 3.16 × 10−5 mol dm−3, 1 × 10−4 to 1 × 10−1 mol dm−3 and −52.6 mV decade−1). Selectivity coefficients for different anions with respect to thiocyanate were calculated. The electrode E2 at pH 5.6 was also used for the determination of SCN by potentiometric titrations with Ag+ ions with good results. The electrode E2 was also used to determine concentrations of thiocyanate in biological samples.  相似文献   

16.
Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 × 10−5-1.0 × 10−3 mol L−1) in 0.1 mol L−1 NaOH solution. High sensitivity (130 mA mol−1 cm2) and a low detection limit (9.0 × 10−7 mol L−1) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 × 10−4 mol L−1 NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method.  相似文献   

17.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

18.
A highly sensitive flow-injection (FI) method with chemiluminescence (CL) detection is used for the determination of l-ascorbic acid. The method is based on the CL reaction of Rhodamine B with cerium(IV) in sulfuric acid media. l-Ascorbic acid is suggested to be a catalyst utilized in the energy-transferred excitation process. The proposed procedure allows quantitation of l-ascorbic acid in the range 3.8×10−13 to 1.0×10−10 mol l−1 with a correlation coefficient of 0.9998 (n=5) and relative standard deviation (R.S.D.) of 0.92% (n=11) at 1.0×10−11 mol l−1. The detection limit (3×blank) was 1.0×10−13 mol l−1. The method is successfully used to determine l-ascorbic acid in fresh vegetables. The possible mechanism of the chemiluminescence in the system is discussed.  相似文献   

19.
Tue-Ngeun O  Jakmunee J  Grudpan K 《Talanta》2005,68(2):459-464
A novel stopped flow injection—amperometric (sFI-Amp) procedure for determination of chlorate has been developed. The reaction of chlorate with excess potassium iodide and hydrochloric acid, forming iodine/triiodide that is further electrochemically reduced at a glassy carbon electrode at +200 mV versus Ag/AgCl electrode is employed. In order to increase sensitivity without using of too high acid concentration, promoting of the reaction by increasing reaction time and temperature can be carried out. This can be done without increase of dispersion of the product zone by stopping the flow while the injected zone is being in a mixing coil which is immersed in a water bath of 55 ± 0.5 °C. In a closed system of FIA, a side reaction of oxygen with iodide is also minimized. Under a set of conditions, linear calibration graphs were in the ranges of 1.2 × 10−6-6.0 × 10−5 mol l−1and 6.0 × 10−5-6.0 × 10−4 mol l−1. A sample throughput of 25 h−1 was accomplished. Relative standard deviation was 2% (n = 21, 1.2 × 10−4 mol l−1 chlorate). The proposed sFI-Amp procedure was successfully applied to the determination of chlorate in soil samples from longan plantation area.  相似文献   

20.
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg2(PABzt)2| graphite, where PABzt stands for p-aminobenzoate ion, are described. This electrode responds to PABzt with sensivity of (58.1±1.0) mV per decade over the range 1.0×10−4 to 1.0×10−1 mol l−1 at pH 6.5-8.0 and a detection limit of 3.2×10−5 mol l−1. The electrode shows easy construction, fast response time (within 10-30 s), low-cost, and excellent response stability (lifetime greater than 6 months, in continuous use). The proposed sensor displayed good selectivity for p-aminobenzoate in the presence of several substances, especially, concerning carboxylate and inorganic anions. It was used to determine p-aminobenzoate in pharmaceutical formulations by means of the standard additions method. The results obtained by using this electrode compared very favorably with those given by an HPLC procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号