首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and selective luminescence quenching method is developed and used for manual and flow injection analysis (FIA) of chromium(VI) by reaction with [Ru(bpy)3]2+. The emission peak of ruthenium(II) at 595 nm is linearly decreased as a function of Cr(VI) concentration. This permits determination of chromium(VI) ion over the concentration range 0.1-20 μg ml−1 with a detection limit of 33 ng ml−1. The quenching process is due to an electron transfer from the luminescent [Ru(bpy)3]2+ complex ion to Cr(VI) resulting in the formation of the non-luminescent [Ru(bpy)3]3+ complex ion. Selectivity for Cr(VI) over many anions and transition, alkali and alkaline earth metal cations is demonstrated. High concentration levels of sulphate, chloride, borate, acetate, phosphate, nitrate, cyanide, Pb2+, Zn2+, Hg2+, Cu2+, Cd2+, Ni2+ and Mn2+ ions are tolerated. The effects of solution pH and [Ru(bpy)3]2+ reagent concentration are examined and the reaction conditions are optimized. Validation of the method according to the quality assurance standards show suitability of the proposed method for use in the quality control assessment of Cr(VI) in complex matrices without prior treatment. The method is successfully applied to determine chromium(VI) in electroplating baths using flow injection analysis. Results with a mean standard deviation of ±0.6% are obtained which compare fairly well with data obtained using atomic absorption spectrometry.  相似文献   

2.
Zhao L  Tao Y  Yang X  Zhang L  Oyama M  Chen X 《Talanta》2006,70(1):104-110
Electrogenerated chemiluminescences (ECLs) of alkaloids, such as berberine, trigonelline, allantoin and betaine, were studied in an aqueous alkaline buffer solution (pH 9.5), based on tris(2,2′-bipyridine)ruthenium(II) [Ru(bpy)32+] immobilized in organically modified silicates (ORMOSILs) film on a glassy carbon electrode (GCE). The immobilized Ru(bpy)32+ showed good electrochemical and photochemical activities. In a flow system, the eluted alkaloids were oxidized on the modified GCE, and reacted with immobilized Ru(bpy)32+ at the potential of +1.50 V (versus Ag/AgCl). The luminescence with λmax 610 nm was caused by a reaction of electrolytically formed Ru(bpy)33+ with an oxidized amine group to generate Ru(bpy)32+*. The determination limit was 5 × 10−6 mol L−1, 8 × 10−6 mol L−1, 2.0 × 10−5 mol L−1 and 5.0 × 10−5 mol L−1 for berberine, trigonelline, allantoin and betaine at S/N 3, respectively. In addition, the factors affecting the determination of the four alkaloids were also studied.  相似文献   

3.
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination.  相似文献   

4.
Two new organic-inorganic hybrid solids containing Keggin ions and ruthenium complexes have been synthesized and characterized by FT-IR, UV-vis, luminescence, X-ray, and TG analysis. In KNa[Ru(bpy)3]2[H2W12O40]·8H2O (1), the [Ru(bpy)3]2+ (bpy=2,2′-bipyridine) complex ions are located in between the infinite one-dimensional double-chains formed by adjacent Keggin anions [H2W12O40]6− linked through {KO7} and {NaO6} polyhedra, while in K6[Ru(pzc)3]2[SiW12O40]•12H2O (2), the [Ru(pzc)3] (pzc=pyrazine-2-carboxylate) complex anions are confined by layered networks of the [SiW12O40]4− clusters connected by potassium ions. Both compounds exhibit three-dimensional frameworks through noncovalent interactions such as hydrogen bonds and anion?π interactions. Additionally, compound 1 shows strong luminescence at 604 nm in solid state at room temperature.  相似文献   

5.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

6.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

7.
A series of new ruthenium(II) complexes containing 1,3-dihydro-1,1,3,3-tetramethyl-7,8-diazacyclopenta[1]phenanthren-2-one (DTDP) ligand, such as [Ru(DTDP)n(L)3−n]2+ (L = 2,2′-bipyridyl (bpy), 4,4′-dimethyl-2,2′-bipyridyl (dmbpy), o-phenanthroline (o-phen), 5-chloro-o-phenanthroline (o-phen-Cl), 2,2′-bipyridine-4,4′-dicarboxaldehyde (bpy-(CHO)2), n = 1, 2, 3) were synthesized and examined as ECL materials. All the complexes were characterized in terms of electrochemical redox potential and relative ECL intensity, and were compared to the well-known tris(o-phenanthroline) ruthenium(II) complex. Most of the synthesized Ru(II) complexes containing the DTDP ligand exhibited more intense ECL emissions than [Ru(o-phen)3]2+. In particular, the ECL intensities of [Ru(DTDP)(o-phen)2]2+ and [Ru(DTDP)(bpy-(CHO)2)2]2+ were observed to be as high as 9-fold and 20-fold greater, respectively, than the ECL intensity of [Ru(o-phen)3]2+.  相似文献   

8.
Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)32+-encapsulated silica nanoparticle (SiO2@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO2@Ru nanoparticles. The as-synthesized SiO2@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)32+ inside the silica shell and of α-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)32+ into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)32+ and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)32+. The as-synthesized SiO2@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL−1 with linear relation from 0.05 to 20 ng mL−1 and a detection limit of 0.035 ng mL−1 at 3σ. The resulting immunosensors possess high sensitivity and good analytical performance.  相似文献   

9.
Yali Li  Hui Zhu  Xiurong Yang 《Talanta》2009,80(2):870-2045
In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2′-bipyridyl) ruthenium(II) ([Ru(bpy)3]2+) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)3]2+ via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)3]2+/[PW12O40]3− hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied. It was found that the corresponding solid membranes exhibited a diffusion-controlled voltammetric feature and excellent electrochemiluminescence behaviors. Hence potential prospects as new electrochemiluminescent materials for application in electroanalytical detection are envisioned.  相似文献   

10.
Hetero- and homo-leptic Ru(II) complexes of a new 4,4′-bipyrimidine ligand, th2bpm (6,6′-di(2″-thienyl)-4,4′-bipyrimidine), have been synthesized and characterized. The parent ligand th2bpm has electron rich thiophene units on the periphery of a bidentate ligand which is capable of binding to metal ions. The heteroleptic complex of th2bpm [Ru(bpy)2th2bpm]2+ (bpy = 2,2′-bipyridine) exhibits a Ru-to-bpm metal-to-ligand charge transfer (MLCT) absorption centered at 547 nm and a Ru-to-bpy MLCT absorption centered at 438 nm. The assignment of the low energy absorption is supported by the relative ease of electrochemical reduction of the new complex as compared to [Ru(bpy)3]2+. The homoleptic complex, [Ru(th2bpm)3]2+, exhibits a Ru-to-bpm MLCT absorption at slightly higher energy (544 nm). Both complexes are emissive at room temperature in fluid solution and 5 is one of the lowest energy emitters based on tris-bidentate Ru(II) complexes known (λmax = 770 nm). The luminescence spectra is red-shifted compared to [Ru(bpy)3]2+ and this effect is ascribed to the delocalization in the acceptor ligand.  相似文献   

11.
A highly selective and sensitive detection method based on tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+] electrogenerated chemiluminescence (ECL) has been developed for the quantitative determination of β-blockers in both pharmaceutical preparations and human urine samples. The ECL emission is based on the reaction between electro-oxidized Ru(bpy)33+ and the secondary amino groups on the β-blockers. The ECL intensities for the β-blockers were strongly dependent on the pH at which the ECL detections were conducted, with the maximum intensities being obtained at pH 9.0. Under the optimal condition, the detection limit for atenolol and metoprolol were almost 0.5 μM (50 pmol) and 0.08 μM (8 pmol), respectively, with S/N of 3 and a linear working range that extends four orders of magnitude with relative standard deviations below 5% for 10 replicate injected samples. The concentrations of atenolol and metoprolol were determined in pharmaceutical preparations using flow injection analysis with Ru(bpy)32+ ECL detection based on standard addition method. The determined values by the present method showed acceptable agreement with the stated values by manufacturers. The determination of the five β-blockers in human urine samples was performed using HPLC-Ru(bpy)32+ ECL detection. The resulting chromatogram was much simpler than that obtained with HPLC-UV absorbance detection.  相似文献   

12.
Six new homobimetallic and heterobimetallic complexes of rhenium(I) and ruthenium(II) bridged by ethynylene spacer [(CO)3(bpy)Re(BL)Re(bpy)(CO)3]2+ [Cl(bpy)2Ru(BL)Ru(bpy)2Cl]2+ and [(CO)3(bpy)Re(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridine, BL = 1,2-bis(4-pyridyl)acetylene (bpa) and 1,4-bis(4-pyridyl)butadiyne (bpb) are synthesized and characterized. The electrochemical and photophysical properties of all the complexes show a weak interaction between two metal centers in heterobimetallic complexes. The excited state lifetime of the complexes is increased upon introduction of ethynylene spacer and the transient spectra show that this is due to delocalization of electron in the bridging ligand. Also, intramolecular energy transfer from *Re(I) to Ru(II) in Re–Ru heterobimetallic complexes occurs with a rate constant 4 × 107 s−1.  相似文献   

13.
Broadband (λ > 320 nm) irradiation of chloroform solutions of either [Ru(bpy)2Cl2] or [Ru(bpy)2Cl2]Cl exposed to air led to a photostationary state, in which [Ru(bpy)2Cl2]+ predominated, and to the continuous decomposition of CHCl3, as evidenced by the accumulation of HCl, hydroperoxides (CCl3OOH and CHCl2OOH), and tetra-, penta-, and hexachloroethane. The addition of Cl? increased the rate of photodecomposition, while the replacement of Cl? by F? greatly decreased the rate. The observations are consistent with a photocatalytic cycle in which [Ru(bpy)2Cl2]+ is photochemically reduced to [Ru(bpy)2Cl2], which is thermally reoxidized by CCl3OO or CCl3OOH. In the absence of air a much slower photodecomposition reaction takes place leading to continuously increasing concentrations of chloroethanes. The data are consistent with a catalytic cycle in which [Ru(bpy)2Cl2]+ is photoreduced, as in aerated solutions, while [Ru(bpy)2Cl2] is photooxidized with chloroform as the substrate.  相似文献   

14.
In this paper, a novel electrochemiluminescence (ECL) sensor was constructed to determine herring sperm (HS) double-stranded (ds) DNA. Tetramethoxysilane and dimethyldimethoxysilane were selected as co-precursors to form an organically modified silicate (ORMOSIL) film for the immobilization of multiwall carbon nanotubes (MWNTs) wrapped by poly(p-styrenesulfonate) (PSS), and then Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) was successfully immobilized on a glassy carbon electrode via ion-association. PSS was employed to increase the conductivity of the ORMOSIL film and disperse the cut MWNTs, which were cut and shortened in a mixture of concentrated sulfuric and nitric acids, in the film. It was found that MWNTs could adsorb Ru(bpy)32+ and acted as conducting pathways to connect Ru(bpy)32+ sites to the electrode. MWNTs also played a key role as materials for the mechanical and thermal properties. The ECL performance of this modified electrode was evaluated in a flow injection analysis (FIA) system, and the detection limit (S/N = 3) for HS ds-DNA was 2.0 × 10−7 g mL−1 with a linear range from 1.34 × 10−6 to 6.67 × 10−4 g mL−1 (R2 = 0.9876). In addition, the ECL sensor presented excellent characteristics in terms of stability, reproducibility and application life.  相似文献   

15.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

16.
Combination of the [Ni(bpy)3]2+ cation complex and the [Pd(dmit)2] anion (dmit=C3S52−=1,3-dithiole-2thione-4,5-dithiolate) has resulted in the paramagnetic [Ni(bpy)3][Pd(dmit)2]·CH3CN compound, a suitable precursor for a molecular magnetic conductor. Its crystal structure consists of a Pd(dmit)2 anion arrangement that is quite different from segregated stack layers often found for M(dmit)2−based compounds. The reduction of the [Pd(dmit)2]- to the 2− charged anion in the title compound most probably is the result of a charge disproportionation between Pd(dmit)2 anions.  相似文献   

17.
Li Mao  Ruo Yuan  Yaqin Chai  Xia Yang 《Talanta》2010,80(5):1692-4551
An effective method for immobilization of Ru(bpy)32+ on glassy carbon electrode surface (GCE) is developed for the preparation of a novel electrochemiluminescence sensor. First of all, the positively charged Ru(bpy)32+ is modified on the surface of negatively charged gold nanoparticles (nano-Au) via the electrostatic interactions to obtain the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs). Subsequently, the large amount of Ru-AuNPs are immobilized on the multi-wall carbon nanotubes (MWCNTs)-Nafion homogeneous composite coated GCE by dual interaction: firstly, the Nafion, a kind of typical cation-exchange membrane, can absorb the Ru-AuNPs as the enrichment of cation Ru(bpy)32+ on the Ru-AuNPs surface; secondly, the employment of carboxylic MWCNTs in the Nafion film can also chemosorb the Ru(bpy)32+ cation on the Ru-AuNPs surface to increase the carrier content. At the same time, the experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and coreactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the assembled film to increase the quantity of excited state of Ru(bpy)32+ in the unit time under the electrochemical condition and finally cause better properties in luminescence. In the experiment, the influence of the coreactant tripropylamine (TPA) on proposed ECL sensor is investigated. The logarithm of ECL intensity is proportional to the logarithm of TPA concentration on the range of 4 × 10−10 M to 2.8 × 10−6 M and 2.8 × 10−6 M to 0.71 × 10−3 M. After optimizing these conditions, the ECL sensor with TPA as coreactant is employed to detect a kind of alkaloid medicine, Matrine, for evaluating the practical application in the medicine analysis. The present sensor with TPA as coreactant shows the good response to the medicine concentration of the Matrine from 2.0 × 10−6 M to 6.0 × 10−3 M, which is used to detect the Matrine concentration in the Matrine injection.  相似文献   

18.
Ding SN  Xu JJ  Zhang WJ  Chen HY 《Talanta》2006,70(3):572-577
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+)-Zirconia-Nafion composite modified glassy carbon disk electrode as a solid-state electrochemiluminescence (ECL) detector is successfully applied to an electrophoretic microchip system with a wall-jet configuration. Pharmaceuticals such as tramadol, lidocaine and ofloxacin were selected to characterize the performance of this microchip capillary electrophoresis (CE)-ECL detection system. Voltammetric and ECL behaviors of immobilized Ru(bpy)32+ were investigated in lidocaine system. Influences of the separation electric field to cyclic voltammograms (CVs) of the immobilized Ru(bpy)32+ were also investigated. Tramadol, lidocaine and ofloxacin can be baseline separated without any additives. The detection limits (S/N = 3) were 2.5 × 10−5 mol L−1 for tramadol, 5.0 × 10−6 mol L−1 for lidocaine, 1.0 × 10−5 mol L−1 for ofloxacin under the sample injection of picoliters, and the linear ranges were from 5.0 × 10−5 to 2.5 × 10−3 mol L−1 for tramadol, 1.0 × 10−5 to 1.0 × 10−3 mol L−1 for lidocaine, and 1.0 × 10−5 to 2.5 × 10−3 mol L−1 for ofloxacin, respectively.  相似文献   

19.
Qiu B  Xue L  Wu Y  Lin Z  Guo L  Chen G 《Talanta》2011,85(1):339-344
Inhibited Ru(bpy)32+ electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)32+/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO4, Cr2O72− and Fe(CN)63− are linear in the range of 1 × 10−7 to 3 × 10−4 M for MnO4 and Cr2O72−, and 1 × 10−7 to 1 × 10−4 M for Fe(CN)63−, with the limit of detection (LOD) of 8.0 × 10−8 M, 2 × 10−8 M, and 1 × 10−8 M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)32+/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)32+/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA·) by inorganic oxidants was proposed.  相似文献   

20.
Changes in pH have been used to shift the band-edge positions of n-type ZnO electrodes relative to solution-based electron acceptors having pH-independent redox potentials. Differential capacitance vs. potential and current density vs. potential measurements using [Co(bpy)3]3+/2+ and [Ru(bpy)2(MeIm)2]3+/2+ (where bpy = 2,2′-bipyridyl and MeIm = 1-methyl-imidazole) allowed investigation of the pH-induced driving-force dependence of the interfacial electron-transfer rate in the normal and inverted regions of electron transfer, respectively. All rate processes were observed to be kinetically first-order in the concentration of electrons at the ZnO surface and first-order in the concentration of dissolved redox acceptors. Measurements using [Co(bpy)3]3+/2+, which has a low driving force and a high reorganization energy in contact with ZnO electrodes, and measurements of [Ru(bpy)2(MeIm)2]3+/2+, which has a high driving force and a low reorganization energy in contact with ZnO electrodes, allowed for the evaluation of both the normal and inverted regions of interfacial electron-transfer processes, respectively. The rate constant at optimum exoergicity was observed to be approximately 5 × 10−17 cm4 s−1. The rate constant vs. driving-force dependence at n-type ZnO electrodes exhibited both normal and inverted regions, and the data were well-fitted by parabolas generated using classical electron-transfer theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号