首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium-catalyzed cyclization-methoxycarbonylation of (2R,3S)-3-methylpenta-4-yne-1,2-diol (6) derived from (2R,3S)-epoxy butanoate 7 followed by methylation gave the tetrahydro-2-furylidene acetate (−)-10, which was converted to the left-half aldehyde (+)-3. A Wittig reaction between (+)-4 and the phosphoranylide derived from the bithiazole-type phosphonium iodide 4 using lithium bis(trimethylsilyl)amide afforded the (+)-cystothiazole A (2).  相似文献   

2.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

3.
Kenji Mori 《Tetrahedron letters》2007,48(32):5609-5611
Absolute configuration of gomadalactones A (1), B (2) and C (3), the pheromone components of the white-spotted longicorn beetle (Anoplophora malasiaca) was assigned as (1S,4R,5S)-1, (1R,4R,5R)-2 and (1S,4R,5S,8S)-3 by comparing their published CD spectra with those of (1R,5R)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]oct-7-ene-2,6-dione (4) and (1S,5R,8S)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]octane-2,6-dione (5) prepared from (R)-(−)-carvone (6).  相似文献   

4.
Enantiomerically pure 2,8-diazabicyclo[3.2.1]oct-2-ene derivatives (+)-5 and (−)-5 have been obtained from 2-azido-3-tosyl-7-azabicyclo[2.2.1]heptanes (+)-1 and (−)-2 and their enantiomers, by ring expansion under radical conditions. Compounds (+)-5 and (−)-5 were transformed into hemiaminals 9 ((3S,4R,5R)- and 10 ((3R,4S,5S)-5-(2-aminoethyl)-2,3,4-trihydroxypyrrolidine) that are good inhibitors of α-mannosidases.  相似文献   

5.
Epoxidations of trans-β-methylstyrene, trans-stilbene and trans-methyl p-methoxycinnamate using chiral dioxiranes derived from both enantiopure diastereomers of α-fluoro cyclohexanones, (2S, 5R)-3a-6a and (2R, 5R)-3e-6e are studied and compared. From ab initio calculations at the HF/6-31G level of conformational inter-conversion for (2S, 5R)-D5a and (2R, 5R)-D5e dioxiranes it was found that, due to the α-fluorine atom, conformer K1 is more stable in the case of (2S, 5R)-D5a while conformer K2 is more stable in the case of (2R, 5R)-D5e. However, in both cases, the more stable conformers, K1 and K2, undergo rapid inter-conversion. Therefore, based on slow epoxidation reactions and rapid ring inversion of six-membered ring dioxiranes the Curtin-Hammett principle holds. Conformation K2 with axial fluorine having been found to be more reactive, the inversion of configuration observed for the epoxides obtained with ketones 3e-6e (compared with ketones 3a-6a) could be rationalized from competitive reactions of K2 and K1 conformations leading to simultaneous production of both (−) and (+) epoxides in the case of ketones 3e-6e.  相似文献   

6.
Naturally occurring (1S,2R,3R,5R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-hyacinthacine A6, 2] together with unnatural (1S,2R,3R,7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-7a-epi-hyacinthacine A1, 3] and (1S,2R,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-5,7a-diepi-hyacinthacine A6, 4] have been synthesized from a DALDP derivative [5, (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine], as the homochiral starting material. The synthetic process employed took advantages of Wittig methodology followed by internal lactamization, in the case of (+)-7a-epi-hyacinthacine A1 (3), and reductive amination for (+)-hyacinthacine A6 (2) and (+)-5,7a-diepi-hyacinthacine A6 (4).  相似文献   

7.
Yuji Takashima 《Tetrahedron》2010,66(1):197-2519
A general approach to the (S)- and (R)-isoflavans was invented, and efficiency of the method was demonstrated by the synthesis of (S)-equol ((S)-3), (R)-sativan ((R)-4), and (R)-vestitol ((R)-5). The key step is the allylic substitution of (S)-6a (Ar1=2,4-(MeO)2C6H3) and (R)-6b (Ar1=2,4-(BnO)2C6H3) with copper reagents derived from CuBr·Me2S and Ar2-MgBr (7a, Ar2=4-MeOC6H4; 7b, 2,4-(MeO)2C6H3; 7c, 2-MOMO-4-MeOC6H3), furnishing anti SN2′ products (R)-8a and (S)-8b,c with 93-97% chirality transfer in 60-75% yields. The olefinic part of the products was oxidatively cleaved and the Me and Bn groups on the Ar1 moieties was then removed. Finally, phenol bromide 9a and phenol alcohols 9b,c underwent cyclization with K2CO3 and the Mitsunobu reagent to afford (S)-3 and (R)-4 and -5, respectively.  相似文献   

8.
Asymmetric synthesis of all the four stereoisomers of cis-3,4-dihydroxy-3,4-dihydromollugins 4 and 6 and trans-3,4-dihydroxy-3,4-dihydromollugins 5 and 7 was achieved. The O-methoxymethyl mollugin derivatives were dihydroxylated to (−)- and (+)-cis-3,4-dihydroxy-3,4-dihydromollugin derivatives using both AD-mix-α and AD-mix-β. Deprotection of the MOM-ethers of cis-dihydroxy compounds resulted in the targeted stereoisomers (−)-(3R,4R)-cis-3,4-dihydroxy-3,4-dihydromollugin 4, (−)-(3R,4S)-trans-3,4-dihydroxy-3,4-dihydromollugin 5, (+)-(3S,4S)-cis-3,4-dihydroxy-3,4-dihydromollugin 6 and (+)-(3S,4R)-trans-3,4-dihydroxy-3,4-dihydromollugin 7. These routes were paved with difficulties, for example, incompatibility of the substrates with AD-mixes, the unexpected formation of trans-dihydroxy compounds and failures in deprotection protocols.  相似文献   

9.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

10.
The irradiation of the title compounds [(Z)-1] having (S)-(+)-sec-butyl, (−)-mentyl and related chiral auxiliaries in methanol and 1,2-dichloroethane containing 2-(diethylamino)ethanol afforded chiral auxiliary-substituted (4S,5S)-, (4R,5R)-, (4R,5S)- and (4S,5R)-4,5-dihydrooxazole derivatives (2) along with (E)-1. It was found that the photoinduced electron transfer-initiated cyclization of 1 gives either of the two diastereomers for cis-2 and trans-2 in diastereomeric excess whose value varies from 6% to 81% depending on solvent and chiral auxiliary.  相似文献   

11.
Racemic 1-(1′-isoquinolinyl)-2-naphthalenemethanol rac-12 was prepared through a ligand coupling reaction of racemic 1-(tert-butylsulfinyl)isoquinoline rac-7 with the 1-naphthyl Grignard reagent 10. Resolution of rac-12 was achieved through chromatographic separation of the Noe-lactol derivatives 14 and 15, providing (R)-(−)-12 of >99% ee and (S)-(+)-12 of 90% ee. The ligand coupling reaction of optically enriched sulfoxide (S)-(−)-7 (62% ee) with Grignard reagent 10 furnished rac-12, with the absence of stereoinduction resulting from competing rapid racemisation of the sulfoxide 7. Reaction of optically enriched (S)-(−)-7 with 2-methoxy-1-naphthylmagnesium bromide was also accompanied by racemisation of the sulfoxide 7, and furnished optically active (+)-1-(2′-methoxy-1′-naphthyl)isoquinoline (+)-3b in low enantiomeric purity (14% ee). The absolute configuration of (+)-3b was assigned as R using circular dichroism spectroscopy, correcting an earlier assignment based on the Bijvoet method, but in the absence of heavy atoms. Optically active 2-pyridyl sulfoxides were found not to undergo racemisation analogous to the 1-isoquinolinyl sulfoxide 7, with the ligand coupling reactions of (R)-(+)- and (S)-(−)-2-[(4′-methylphenyl)sulfinyl]-3-methylpyridines, (R)-(+)-17 and (S)-(−)-17, with 2-methoxy-1-naphthylmagnesium bromide providing (−)- and (+)-2-(2′-methoxy-1′-naphthyl)-3-methylpyridines, (−)-18 and (+)-18, in 53 and 60% ee, respectively. The free energy barriers to internal rotation in 3b and 18 have been determined, and the isoquinoline (R)-(−)-12 examined as a ligand in the enantioselectively catalysed addition of diethylzinc to benzaldehyde; (R)-(−)-12 was also converted to (R)-(−)-N,N-dimethyl-1-(1′-isoquinolinyl)-2-naphthalenemethanamine (R)-(−)-19, and this examined as a ligand in the enantioselective Pd-catalysed allylic substitution of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate.  相似文献   

12.
Reaction paths of the one-pot reaction of (R)-2-(α-methylbenzyl)amino-1,3-propanediol (1) and 2-chloroethyl chloroformate with DBU giving (4SR)-4-hydroxymethyl-3-(α-methylbenzyl)-2-oxazolidinone [(4S)-2] (94% de) were investigated. Intermediates of this reaction, 2-chloroethyl (2S)- and 2-chloroethyl (2R)-3-hydroxy-2-[(αR)-α-methylbenzyl]aminopropyl carbonates [(2S)-4 and (2R)-4], were synthesized individually. After the addition of DBU to the respective solution of the carbonate (2S)-4 and that of (2R)-4 in dichloromethane, the intramolecular transesterification between (2S)-4 and (2R)-4 and the diastereoselective intramolecular cyclization proceeded to afford (4S)-2 in high diastereomeric excess. Therefore, two monocarbonates (2S)-4 and (2R)-4 were kinetically resolved by this cyclization during the intramolecular transesterification between (2S)-4 and (2R)-4. We found that this process involved dynamic kinetic resolution accompanied by intramolecular transesterification.  相似文献   

13.
Enantioenriched tertiary homoallylic alcohol derivatives (S)-2c and (S)-2a were obtained via Evans aldol methodology and enzymatic resolution of racemic tertiary acetate 2e, respectively. In order to study asymmetric 1,3-induction of the stereogenic center present in 2, congener (R)-2a as well as its O-protected derivatives (R)-2b-d were submitted to Sharpless asymmetric dihydroxylation to yield the diastereomeric 1,2,4-triol derivatives (2R,4R)- and (2S,4R)-3a-d, revealing that neither the substrate nor the Sharpless catalyst exert any stereocontrol. Similar observations were made for the less bulky alkynyl-substituted derivative 12b. However, by using a directed dihydroxylation, the anti product (2R,4R)-3a was favored.  相似文献   

14.
Tanja Grkovic 《Tetrahedron》2009,65(32):6335-207
A survey of the secondary metabolite chemistry profiles of New Zealand sponges of the genus Latrunculia has yielded new members of the discorhabdin A- and B-type families. The structure elucidation of (+)-(6R,8S)-1-thiomethyldiscorhabdin G/I (5) and both enantiomers of 16a,17a-dehydrodiscorhabdin W (6) are reported. Absolute configurations were assigned by comparison with a dataset of recently reported electronic circular dichroism spectra of discorhabdin alkaloids. A stereochemical correction of the recently reported natural product (+)-3-dihydrodiscorhabdin A from (3S,5R,6S,8S)-(7) to the C3-epimeric (+)-(3R,5R,6S,8S)-(8) and assignment of absolute configuration is also presented. Semi-synthesis of (+)-(3S,5R,6S,8S)-(7) from (+)-discorhabdin A provided further evidence for this structure revision. Cytotoxicity data is reported for 5-8.  相似文献   

15.
Mikio Fujii  Hiroyuki Akita 《Tetrahedron》2008,64(22):5147-5149
The concise synthesis of (8aR)-(−)-albaconol (1) from (8aR)-albicanol (2) obtained from the lipase-assisted asymmetric acetylation of rac-2, was achieved in 45% overall yield (eight steps). By comparison of the sign of specific rotation of between synthetic (8aR)-(−)-albaconol (1) and natural (+)-albaconol (1), the absolute structure of natural (+)-1 was determined to be 1R,2R,4aS,8aS configuration.  相似文献   

16.
A stereocontrolled synthesis of the marine natural products (+)-bromoxone (1) and (+)-4-acetylbromoxone (2) is reported. The sequence features the enzymatic kinetic resolution of 4-hydroxycyclohexenone (6) via its S-benzyl adduct. Thereafter, a base-mediated elimination-silylation generated an optically active (−)-4S-4-tert-butyldimethylsilyoxycyclohexenone (5), which then underwent diastereoselective epoxidation. Saegusa-Ito oxidation enabled formation of the corresponding α,β-unsaturated ketone 13. Bromination-elimination and subsequent removal of the silicon protecting group afforded (+)-bromoxone (1) which was converted into (+)-(4S,5R,6R)-4-acetoxy-2-bromo-5,6-epoxycyclohex-2-enone (2) [(+)-4-acetylbromoxone]. Using a luciferase gene reporter assay ED50 for NFκB inhibition of 9 μM was determined.  相似文献   

17.
Gelation of malonamides was investigated for the first time. Bis(phenylglycinol)malonamide 1, and methyl-, dimethyl-, ethyl-, diethyl- and isopropylmalonamides 2, 3, 4, 5 and 6, respectively, exhibited profoundly different gelling properties. Monoalkyl malonamides are efficient organogelators, and their gelling properties strongly depend on their stereochemistry. In contrast, symmetrically substituted dialkymalonamides, that is, (R,R)-dimethylmalonamide 3 and (R,R)-diethylmalonamide 5 as well as the unsubstituted 1 lack any gelation ability. Methyl derivative (R,R)-2 is an excellent, and its ethyl analogue (R,R)-4 a moderate gelator of toluene, p-xylene and tetralin while the isopropyl derivative (R,R)-6 shows only very weak gelation of tetralin and some more polar solvents. Meso diastereoisomers (R,r,S)-2 and (R,s,S)-2, as well as (R,r,S)-4 and (R,s,S)-4), each possessing a pseudoasymmetric centre represent very rare examples of gelling meso-compounds. The racemate 4 (rac-4) showed more efficient gelation of some solvents than the pure enantiomer (R,R)-4, while rac-2 failed to gel any of the solvents which were efficiently gelled by (R,R)-2.  相似文献   

18.
Tetrahydroisoquinoline alkaloids, (S)-(−)-trolline, (R)-(+)-crispin A, and (R)-(+)-oleracein E, have been synthesized stereoselectively from the both enantiomers of common intermediate (S)-4 and (R)-4. The key step in the synthesis include a stereoselective Bi(OTf)3-catalyzed intramolecular 1,3-chirality transfer reaction of chiral non-racemic amino allylic alcohols (S)-6 and (R)-6 to construct both enantiomers of (E)-1-propenyl tetrahydroisoquinoline 4.  相似文献   

19.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (6) was straightforwardly transformed into 5-azido-3-O-benzoyl-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (8), after treatment under modified Garegg's conditions followed by reaction of the resulting 3-O-benzoyl-4-O-benzyl-5-deoxy-5-iodo-1,2-O-isopropylidene-α-l-sorbopyranose (7) with lithium azide in DMF. O-debenzoylation at C(3) in 8, followed by oxidation and reduction caused the inversion of the configuration to afford the corresponding β-d-psicopyranose derivative 11 that was transformed into the related 3,4-di-O-benzyl derivative 12. Cleavage of the acetonide of 12 to give 13 followed by O-tert-butyldiphenylsilylation afforded a resolvable mixture of 14 and 15. Compound 14 was transformed into (2R,3R,4S,5R)- (17) and (2R,3R,4S,5S)-3,4-dibenzyloxy-2′,5′-di-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (18) either by a tandem Staudinger/intramolecular aza-Wittig process and reduction of the resulting intermediate Δ2-pyrroline (16), or only into 18 by a high stereoselective catalytic hydrogenation. When 15 was subjected to the same protocol, (2S,3S,4R,5R)- (21) and (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (22) were obtained, respectively.  相似文献   

20.
The resolution by Lipase PS of rac-5 (from reduction of ketone 6, obtained from dicyclopentadiene with a new environment-friendly synthesis) gives (2S)-5, which was further reduced to the endo(2R)-1a alcohol. The endo(2S)-1b alcohol was obtained from camphor with a multistep synthesis. Pinacol couplings of 3a,b, carried out with Mg/Hg or Corey's general procedure respectively, afforded with high diastereoselectivity the C2 symmetry diols (2R,2′R)-2a and (2S,2′S)-2b, with endo oriented OH functions. The enantiogenic power of the endo alcohol (2R)-1a and (2S)-1b and of the diols (2R,2′R)-2a and (2S,2′S)-2b was tested towards the LiAlH4 reduction of acetophenone. The C2 symmetry appears to play a fundamental role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号