首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs) are considered to be the ideal reinforcing agent for high-strength polymer composites, because of their fantastic mechanical strength, high electrical and thermal conductivity and high aspect ratio. Polymer/MWCNTs composites are easily molded, and the resulting shaped plastic articles have a perfect surface appearance compared with polymer composites made using usual carbon or glass fibers. Good interfacial adhesion between the MWCNTs and the polymer matrix is essential for efficient load transfer in the composite. The ultrahigh strength polymer composites demand the uniform dispersion of the MWCNTs in the polymer matrix without their aggregation and the good miscibility between MWCNT and polymer matrix. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt-compounded with MWCNTs. A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The electrical conductivity of the composites was determined by measuring the volume resistivity, which is a value of the resistance expressed in a unit volume by two-probe method. The thermal diffusivity and heat capacity of composites was measured by laser flash method, and the effects of modification of the MWCNT in PLLA matrix are discussed.  相似文献   

2.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

3.
Multi-walled carbon nanotubes (MWCNTs) were modified by corona discharge and then heat treated in the air. The influences of corona discharge parameters such as treatment time and processing power were investigated. The results of energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA) indicated the introduction of oxygen-containing functional groups onto the surface of the MWCNTs after heat treatment. The water contact angle tests showed that the hydrophobicity of the MWCNTs was decreased to some extent. The static water contact angle was reduced from 146° to 122° when the time of the corona discharge treatment reached 3 min at the processing power of 200 W. The enhanced thermomechanical and mechanical properties of epoxy nanocomposites filled with the corona discharge treated MWCNTs were observed. The modified MWCNTs conferred better properties on the composites than the pristine MWCNTs because of the improved dispersion of MWCNTs in matrix and the enhanced interfacial interaction between the treated MWCNTs and epoxy.  相似文献   

4.
Epoxy nanocomposites with unmodified multiwalled carbon nanotubes (u-MWCNTs) and silanized multiwalled carbon nanotubes (si-MWCNTs) were prepared by a cast molding method. The effects of 3-aminopropyltriethoxysilane functionalization of MWCNTs on thermal, tensile, and morphological properties of the nanocomposites were examined. The nanocomposites were characterized by thermogravimetric analysis, dynamic mechanical thermal analysis, and tensile testing. The results showed that epoxy composites based on si-MWCNTs showed better thermal stability, glass transition temperature, and tensile properties than the composites based on u-MWCNTs. These results prove the effect of silane functionalization on the interfacial adhesion between epoxy and MWCNTs. This was further confirmed by morphology study of fractured surfaces of nanocomposites by field emission scanning electron microscopy.  相似文献   

5.
High density polyethylene (HDPE)/poly (ethylene terephthalate) (PET) (90/10 wt.%) blends and HDPE/PET/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt mixing process, and the influence of MWCNTs on the mechanical and rheological properties of the nanocomposites was investigated. MWCNTs were added up to 5 wt.% in the HDPE/PET matrix. Transmission electron microscopy images reveal that the MWCNTs were homogeneously dispersed in the HDPE/PET matrix. Improvement of mechanical properties was observed by the addition of MWCNTs compared with HDPE/PET blends. Prominent increases in the complex viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content.  相似文献   

6.
Abstract

A series of polycarbonate (PC)/acrilonitrile butadiene rubber (NBR)/multi-wall carbon nanotube (MWCNT) nanocomposites were prepared via melt compounding in an internal mixer. The effect of the MWCNT content on the morphology and the thermal and mechanical properties of the prepared nanocomposites were studied. The morphologies of the samples were investigated by field-emission scanning electron microscopy (FESEM) and the thermal properties by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile mechanical results of the nanocomposites showed a decrease in elongation at break with an increase of only 2?wt% of MWCNT content in the PC/NBR blends, and an increasing value in elastic modulus and tensile strength of the nanocomposites. The FESEM images showed that the MWCNTs had good affinity with the polymers and no compatibilizer was needed for making the nanocomposites. The DSC and TGA results showed an increase in thermal stability with addition of MWCNTs because of the more thermally stable carbon nanotubes particles which was uniformly dispersed within the nanocomposites.  相似文献   

7.
《Composite Interfaces》2013,20(6):487-506
Layered aligned dispersion of graphene in graphene/polyvinyl alcohol (PVA) nanocomposites is prepared in the form of films through simple solution processing route. The results indicate that there exist an interfacial interaction between PVA and graphene because of hydrogen bonding. This is responsible for the change in structure of PVA (such as decrease in the level of crystallization) and exhibiting ductile PVA nanocomposite film with improved tensile modulus, tensile strength, and thermal stability. Moreover, to improve the mechanical properties of PVA nanocomposites, graphene is successfully modified using a non-covalent modifier, sodium alginate (SA) and there exist an ‘anion-π’ type of interaction in between SA and graphene. The modification results in finer dispersion of the graphene in PVA/SA-m-graphene nanocomposites. In addition, there exist a hydrogen bonding in between PVA and SA. This has resulted in the remarkable improvement in mechanical properties of PVA/SA-m-graphene nanocomposites as compared to pure PVA and PVA/graphene nanocomposites. The increase in mechanical properties of PVA/SA-m-graphene nanocomposites is achieved through better load transfer from graphene to polymer matrix, despite decrease in crystallinity of PVA. Improvement in tensile modulus and tensile strength is highest at 0.5 wt.% of SA-modified graphene in PVA/SA-m-graphene nanocomposites because of finer dispersion of graphene and is 62 and 40% higher than that of pure PVA. Addition of SA-modified graphene also improves the thermal stability of PVA/SA-m-graphene nanocomposites remarkably as compared to unmodified graphene PVA nanocomposites.  相似文献   

8.
A hierarchical structure of glass fiber cloth (GFC) deposited with multiwalled carbon nanotubes (MWCNTs) and cationic polyelectrolyte poly (diallyldimethylammonium chloride) (PDDA) was fabricated by the layer-by-layer (LBL) assembly method. We demonstrated that negatively charged MWCNTs, by acid functionnalization, and positively charged PDDA were sequentially adsorbed onto the GFC to form a uniform and porous interconnected network structure of MWCNTs. Multiscale composites with GFC-[PDDA-MWCNTs] n were prepared by compression molding. The presence of the MWCNTs with their porous nanostructure helped in the formation of an interpenetrating network with the matrix at the interface layer. The resulting interlaminar strength increased by 18~37% and the surface electrical resistance (~105 Ω) dropped greatly compared to those of epoxy/GFC composites (1014 Ω), showing them to be promising structural composites with GFC-[PDDA-MWCNTs] n reinforcement with an improvement in properties over epoxy/GFC composites.  相似文献   

9.
Dispersion of carbon nanotubes in a polymer matrix is one of the most critical issues in carbon nanotube/polymer composites. In this paper we discuss the considerable improvement in the dispersion of multiwalled carbon nanotubes (MWNTs) in poly(vinyl alcohol) (PVA) matrix that was attained through gum arabic treatment. The mechanical properties of these MWNT/PVA composites show that only 2 wt% nanotube loading increases the tensile modulus by more than 130%.  相似文献   

10.
A novel polyhedral oligomeric silsesquioxane containing phosphorus and boron (PB-POSS) was synthesized. The resulting PB-POSS and multiwalled carbon nanotubes (MWCNTs) were incorporated into an epoxy resin (EP) to prepare PB-POSS/MWCNTs/EP composites through a solution mixing method. The synergistic effect of MWCNTs and PB-POSS on the thermal and mechanical properties and the flame retardancy of these flame retardant composites were studied. The experimental results showed that the introduction of PB-POSS or MWCNTs further improved the LOI values of the epoxy resin, and the highest LOI value (32.8%) was obtained for the formulation containing 14.6 wt% PB-POSS and 0.4 wt% MWCNTs. In addition, the incorporation of both PB-POSS and MWCNTs significantly improved the thermal and mechanical properties of the composites. The mechanical properties of composites containing 14.7 wt% PB-POSS and 0.3 wt% MWCNTs reached the maximum. The impact strength and flexural strength increased by 42% and 7%, respectively, compared to the neat epoxy resin. Thus, a combination of PB-POSS and MWCNTs in the appropriate ratio could effectively enhance the thermal and mechanical properties and the flame retardancy of the epoxy resin matrix.  相似文献   

11.
In this research work, magnetic multi-walled carbon nanotube (MWCNT) nanocomposites have been created by the assembly of Zn-Sn substituted strontium ferrite film onto the surface of MWCNTs. X-ray diffraction and transmission electron microscopy were used to demonstrate the successful attachment of ferrite films to MWCNTs. Mössbauer spectroscopy indicates that the Zn-Sn ions preferentially occupy the 2b and 4f2 sites. Vibrating sample magnetometry confirms the relatively strong dependence of saturation magnetization with the volume percentage of MWCNTs. Microwave absorption of the MWCNTs/doped strontium ferrite nanocomposites is evidently enhanced compared to that of pure MWCNTs and ferrite. The maximum reflection loss increased significantly with an increase in volume percentage of MWCNTs in nanocomposites. Reflection loss evaluations indicated that the nanocomposites display a great potential application as wide-band electromagnetic wave absorbers.  相似文献   

12.
Curing behavior of amino-functionalized carbon nanotubes (ACNT) used as reinforcing agent in epoxy resin has been examined by thermal analysis. Experiments performed as per supplier’s curing conditions showed that modification of the curing schedule influences the thermo-mechanical properties of the nanocomposites. Specifically, the glass transition temperature (Tg) of ACNT-reinforced composites increased likely due to the immobility of polymer molecules, held strongly by amino carbon nanotubes. Further, a set of composites were prepared by implementing the experimentally determined optimal curing schedule to examine its effect on the mechanical properties of different GFRP compositions, while focusing primarily on reinforced ACNT and pristine nanotube (PCNT) matrix with silane-treated glass fibers. From the silane treatment of glass fibers in ACNT matrix composition it has been observed that amino silane is much better amongst all the mechanical (tensile and flexural) properties studied. This is because of strong interface between amino silane-treated glass fibers and modified epoxy resin containing uniformly dispersed amino-CNTs. On the other hand, PCNT GFRP composites with epoxy silanes demonstrated enhanced results for the mechanical properties under investigation which may be attributed to the presence of strong covalent bonding between epoxy silane of glass fiber and epoxy–amine matrix.  相似文献   

13.
A recently reported solvent spraying technique was used herein for incorporation of multi-walled carbon nanotubes (MWCNTs) on unidirectional carbon fiber/epoxy prepregs. The role of the agglomerates reduction of oxidized MWCNTs on Mode-I interlaminar fracture toughness (GIC) of laminated composites was investigated using double cantilever beam tests. Multiscale laminate composites were fabricated using MWCNTs without and with an acid oxidation, agglomerates reduction (AR) and a sequential treatment based on oxidation and AR. For comparison, specimens without MWCNTs were also prepared and tested. Fourier transform infrared analysis shows evidence of an important amount of oxygenated functional groups on the surface of as-received and oxidized MWCNTs. The results also show Mode-I fracture toughness improvements for all the laminated composites compared to reference samples. A substantial 52% increase in the average GIC initiation was achieved for laminated composites reinforced with oxidized AR-MWCNTs prepared with only 0.05 wt.% MWCNTs.  相似文献   

14.
《Composite Interfaces》2013,20(8):737-747
Polypyrrole (PPy) was synthesized and doped with 1, 2, 4, and 8?wt.% of functionalized multi-wall carbon nanotubes (MWCNTs) by in situ polymerization. TGA/DTA analysis of nanocomposites revealed an increase in thermal stability by increasing the CNTs wt.%. Measurement of electrical resistivity showed a reduction in the resistivity of the composites at all temperatures. The glass transition temperature (Tg) of the samples was measured using electrical resistivity measurements and showed that by increasing the amount of functionalized MWCNTs in PPy, its Tg was increased. Temperature dependence of resistivity of pressed pure PPy showed that by increasing the pelletization pressure, the Tg increased. Also the hardness of nanocomposites was increased by increasing the MWCNTs wt.%.  相似文献   

15.
《Composite Interfaces》2013,20(4-6):319-328
In this work, the effects of electron acceptor–donor modification on the surface properties of SiC were investigated in the mechanical interfacial properties of carbon fibers-reinforced SiC-impregnated epoxy matrix composites. The surface properties of the SiC were determined according to acid/base values and FT-IR, and contact angle measurements. The thermal and mechanical interfacial properties of the composites were evaluated using a thermogravimetric analysis, critical strain energy release rate mode II (G IIC), and impact strength testing. As a result, the electron acceptor-treated SiC had a higher acid value and polar component in surface free energy than did the untreated SiC or the electron donor-treated SiC. The G IIC and impact strength mechanical interfacial properties of the composites had been improved in the specimens treated by acidic solutions due to the good wetting and a high degree of adhesion with electron donor characteristic epoxy resins.  相似文献   

16.
In this article, the phase separation in the melt blended polycarbonate (PC) and ethylene propylene copolymer (EPC) has been studied with dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Two glass transition temperatures on the tan δ curves were detected. This confirms the immiscibility of PC and EPC phases. Different content of multi-walled carbon nanotubes (MWCNTs) were added to the PC/EPC blends and the interfacial adhesion between MWCNTs and PC/EPC blend were shown using transmission electron microscopy (TEM). The MWCNTs were located in the PC phase and at the interfaces of PC and EPC phases. Moreover, the storage modulus (E′) of polymer blends was changed by the increasing content of EPC elastomer and MWCNTs. The value of E′ of PC decreased with an incorporation of EPC. While, along with an addition of MWCNTs in the PC/EPC blends an increase of E′ was visible. The strong interfacial interactions between the matrix and MWCNTs played the main role in increasing the values of the E′ of the nanocomposites.  相似文献   

17.
Hydrogel nanocomposites of polyvinyl alcohol (PVA) filled with gold nanoparticles (Au NPs) were synthesised using gamma irradiation technique. Structural, optical, and morphological characterisation was performed using powder XRD, UV-vis, FESEM, and TEM techniques. Inclusion of Au NPs at the time of crosslinking may have reduced the binding sites of PVA matrix, which resulted in high-swelling capacity of Au/PVA hydrogel nanocomposites. The increase in mechanical stability of the Au/PVA hydrogel nanocomposites has been observed and it may be due to increase in the crystallinity percentage with increased Au NPs in PVA matrix. These nanocomposites may fulfil the increasing demand for multifunctional hydrogel with enhanced swelling and mechanical properties.  相似文献   

18.
The blends of polyamide 6/acrylonitrile-butadiene-styrene (PA6/ABS), with added styrene-maleic acid copolymer (SMA) compatibilizer, were prepared through melt mixing in an internal mixer. The effects of blend composition and various process conditions, as well as the addition of multi-wall carbon nanotubes (MWCNTs) to the blends, on the morphology and mechanical properties were investigated. The morphology of the blends and blend nanocomposites were observed by scanning electron microscopy (SEM) and analyzed using an image analysis technique. The mechanical behavior of the blends was investigated by tensile and also impact testing. The results showed that the blend composition as well as the processing conditions significantly affected the morphology and mechanical properties of the PA6/ABS blends. Among the various compositions, the blend with 36?wt.% of ABS and 4?wt.% of SMA compatibilizer exhibited the best mechanical properties. Comparing various speeds and times of mixing, it was found that less mixing speed and longer mixing times resulted in the favorable morphology and conditions for achievement of the desired toughness for the polyamide 6. By adding different amounts of MWCNTs to the blends, it was found that the presence of the carbon nanotubes changed the viscosity of the resulting nanocomposite and thus changed the morphology. These nanocomposites also showed an improvement in mechanical properties. The MWCNTs acted as a second compatibilizer, resulting in a synergistic effect on the mechanical properties of the PA6/ABS blend nanocomposites.  相似文献   

19.
In this study, copper (Cu) nanocomposites reinforced by coated multiwall carbon nanotubes (MWCNTs) have been fabricated with different weight fractions of MWCNT. In the first step, the as-received MWCNTs were coated with Cu using electroless deposition process. In the next step, combination of sonication and ball milling (with two milling time of 1.5 and 3 h) was used for preparing MWCNT/Cu composite powders. Finally, the disk-shaped specimens were sintered by hot-press sintering machine. Characterization of sintered nanocomposites revealed that increasing milling time led to improved mechanical properties, but higher defect density on the MWCNT sidewalls is obtained which is especially undesirable for electrical properties of nanocomposite. Our results indicated that simultaneous improvements of interface reactions and distribution uniformity of MWCNTs and Cu are key factors for obtaining enhanced mechanical properties. Accordingly, enhancement of up to ~150 and ~86 % in microhardness compared to pure Cu and 1 wt% as-received MWCNT/Cu was achieved by addition of 1 wt% Cu-coated MWCNT. On the contrary, existence of oxygen atoms in the Cu and coated MWCNT interface (from functional groups and deposited copper oxide) obstructs considerable improvement of electrical resistivity compared to as-received MWCNT/Cu nanocomposites.  相似文献   

20.
《Current Applied Physics》2018,18(4):388-396
In this work, Polyvinylidene Fluoride (PVDF)/polystyrene (PS)/high density polyethylene (HDPE) ternary blends displayed a core-shell structure where HDPE was the core, PS was the shell, and this core-shell system dispersed in PVDF matrix. Here, multiwall carbon nanotubes (MWCNTs) and ferroferric oxide (Fe3O4) was incorporated. F-F composites with MWCNTs was in PS shell and Fe3O4 was in PVDF matrix and E-F composites with MWCNTs was in PS shell and Fe3O4 was in HDPE core were fabricated by melt blending. It was indicated that the core-shell morphology between PS and HDPE was well retained with the incorporation of Fe3O4 and MWCNTs. Both the electrical conductivity of F-F and E-F composites were similar without no obvious change with the incorporation of Fe3O4. Composites with greater than 20 dB shielding effectiveness were easy to obtain. The highest SE we observed was for the F-F composite with 1 vol% Fe3O4 and 1 vol% MWCNTs was 25 dB at 9.5 GHz, and the SE was over 20 dB in the whole measured frequency(X-band). The E-F composites with SE greater than 20 dB in X-band was at 2 vol% Fe3O4 and 1 vol% MWNCTs. Such effective and lightweight nanocomposites were obtained, resulting from the synergetic effect of MWCNTs and Fe3O4 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号