首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the interface debonding and frictional slipping of carbon fiber-reinforced ceramic-matrix composites (CMCs) under two-stage cyclic fatigue loading have been investigated using micromechanics approach. Under cyclic fatigue loading, the fiber/matrix interface shear stress degrades with increasing cycle number due to interface wear. The synergistic effect of interface wear and fatigue loading sequence on interface debonding and frictional slipping has been analyzed. Based on the fatigue damage mechanism of fiber slipping relative to matrix, in the interface debonded region, upon unloading and subsequent reloading, the interface debonded length and interface slip lengths, i.e. interface counter-slip length and interface new-slip length, are determined using the fracture mechanics approach. The relationships between interface debonding, interface slipping, interface wear, cycle number, and different loading sequences are determined. There are two types of fatigue loading sequences considered, i.e. (1) cyclic loading under low peak stress for N1 cycles, and then high peak stress; and (2) cyclic loading under high peak stress for N1 cycles, and then low peak stress. The effects of peak stress level, interface wear, cycle number, and loading sequence on interface debonding and frictional slipping of fiber-reinforced CMCs have been analyzed. The fatigue hysteresis loops of cross-ply carbon fiber-reinforced silicon carbide composite corresponding to different cycle number under two-stage cyclic fatigue loading have been predicted.  相似文献   

2.
The interface shear stress in C/SiC and SiC/SiC ceramic-matrix composites with different fiber preforms, i.e. unidirectional, cross-ply, 2D woven, 2.5D woven, and 3D braided, under cyclic fatigue loading at room and elevated temperatures have been estimated. An effective coefficient of the fiber volume fraction along the loading direction was introduced to describe the fiber preforms. Based on fiber slipping mechanisms, the hysteresis loops models considering different interface slip cases have been developed. Using the experimental fatigue hysteresis dissipated energy, the interface shear stress degradation rates of C/SiC and SiC/SiC composites with different fiber preforms at room and elevated temperatures have been obtained and compared. It was found that the interface shear stress degradation rate is the highest for 3D braided SiC/SiC at 1300 °C in air, and the lowest for 2D woven C/SiC at room temperature under cyclic fatigue loading.  相似文献   

3.
The work summarizes a large bulk of experimental data from specimens made of 40CrMoV13.9 steel. The first part of the paper deals with multiaxial fatigue strength of notched round bars tested under combined tension and torsion loading, both in-phase and out-of-phase. The results from multi-axial tests are discussed together with those obtained under pure tension and pure torsion loading from notched specimens with the same geometry. The second part of the paper summarizes data from uniaxial-tension stress-controlled fatigue tests on specimens made of the same steel. Tests are performed varying temperature, from room temperature up to 650°C. Altogether more than 180 new fatigue data are summarised in the present work, corresponding to more than two-years of testing programme. All fatigue data are presented first in terms of nominal stress amplitudes referred to the net area and then re-analysed in terms of the mean value of the strain energy density evaluated over a given, crescent shape volume embracing the stress concentration region. For the specific steel, the radius of the control volume is found to be independent of the loading mode.  相似文献   

4.
Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place.  相似文献   

5.
In this paper, we present the giant magneto-impedance (GMI) effect (real part of longitudinal impedance, Z, and of the off-diagonal impedance) and hysteretic magnetic properties of amorphous glass-coated microwires with different compositions possessing nearly zero, positive and negative magnetostriction constant and metallic nucleus diameter ranging between 6 and 16 μm. Enhanced soft magnetic properties (low coercivity of about 4 A/m) and high-GMI effect have been observed in Co-rich microwires with vanishing magnetostriction constant. The magnetic anisotropy field of these microwires depends on the ratio between metallic diameter, d and total microwires diameter, D. Stress-sensitive magnetic properties have been obtained in Fe-rich microwires after stress annealing: hysteresis loop stress-annealed (SA) microwires drastically changes under applied stress. A variety of hysteresis loops with different hysteresis loops can be obtained in Fe-rich microwires changing the conditions (time and/or temperature) of the stress annealing. The obtained results allow us to tailor the microwire magnetic properties for magnetic sensors applications through selection of their composition and/or geometry and by thermal treatment.  相似文献   

6.
《Composite Interfaces》2013,20(5):473-479
Continuous Nextel 720 fibers reinforced SiC composites with PyC interface are fabricated by LPCVI at 1000°C for 200 h using SiCH3Cl3 as precursor. The mechanical properties at RT and 1300°C are measured by three-point bending. The microstructures of the interface are characterized by TEM. The results indicate the composites have the metal-like behavior of fracture, whether they are at RT or high temperature. The RT and 1300°C strengths are 310 MPa and 140 MPa, respectively. The RT and 1300°C strains are 0.32% and 0.12%, respectively. The loss of flexural strength and strain of the Nextel 720/SiC composites at high temperature result from stronger residual thermal stress caused by the mismatch of CTE between fibers and matrix. A gap appears between fibers and PyC interface after the 1300°C test, which could be resulted from 7.7% compressive strain of PyC interface caused by the residual thermal stress and 0.1% sintering shrinkage of Nextel 720 fiber.  相似文献   

7.
Ferroelectric Pb(Zr0.52Ti0.48)O3 thin films were deposited on the Pt/Ti/SiO2/Si substrate by a sol-gel method. As a direct electric field was applied on the films during thermal treatment, strain behavior and ferroelectric properties have been investigated. X-ray diffraction patterns show that great tensile strain exists nearby the interface of the 250 nm thin film while thermal treatment assisted with direct electric field can obviously relax it. The analysis of hysteresis loops indicates that the remnant polarization increases with the thermal treatment time. These results suggest that electric-field-assisted thermal treatment is an effective way to reduce films' tensile strain through the local plastic deformation in Pt layer and enhance the remnant polarization.  相似文献   

8.
荧光光纤光栅传感特性的实验研究   总被引:2,自引:2,他引:0  
在载氢掺铒光纤上写入Bragg光纤光栅,得到新型光子学器件-荧光光纤光栅.分别对其Bragg波长(λB)及荧光寿命(τ)的温度(T)及应变(ε)响应特性进行了实验研究,并且给出了λB和τ分别关于(T,ε)的拟合方程.实验结果表明:荧光光纤光栅的λB对T和ε的响应具备一般Bragg光纤光栅的优良特性,测得温度灵敏度为11.1pm /℃,应变灵敏度为1.19pm/με;而且τ对T和ε的响应也具有良好的线性关系,温度灵敏度为0.59 μs/℃,应变灵敏度为6.16 ns/με.实验结论为解决温度应力交叉敏感、实现温度应力的同时监测提供一条新颖的途径.  相似文献   

9.
The residual lattice strains of nanocrystals, which are responsible for the formation of states with transverse magnetic anisotropy in samples of the Fe-Si-Nb-B-Cu alloys (Finemets) subjected to annealing under tensile loading with the subsequent relaxation annealing at temperatures in the range from 500 to 600°C, have been measured using X-ray diffraction. The relative extension and compression of interplanar spacings have been compared with the induced magnetic anisotropy constants determined from the magnetic hysteresis loops. It has been shown that, during the relaxation annealing at the nanocrystallization temperature (500?C540°C), the observed decrease in the residual strains is accompanied by a decrease in the transverse magnetic anisotropy constant. A linear correlation between the relative extension and compression of the interplanar spacings for different crystallographic planes and magnetic anisotropy constant has been revealed. The deviation from linearity is observed after annealing at a temperature of 600°C, which is explained by a possible increase in sizes of nanocrystals, changes in their structure, and partial crystallization of the amorphous matrix.  相似文献   

10.
应用红外热像技术,对锚杆与围岩加载变化破坏过程中的红外辐射现象进行了实验研究,结果表明:应力峰值前,随着荷载的增加,红外辐射温度呈现整体、均匀性升温变化,应力峰值后,在锚杆周围形成一个由多条不同等温线组成的区域,其形状是以锚杆为中心的近似圆形区域, 由内向外, 温度逐步降低; 锚固体破坏时,存在红外辐射温度-时间曲线型和红外热像型2种形式的红外前兆特征,分别反映红外前兆的时间信息和空间信息; 红外辐射温度-时间曲线的破裂前兆为降温型,而红外热像特征包括高温条带和低温条带两种类型。  相似文献   

11.
A theoretical model has been developed to study the mechanical behaviors of the interface between an embedded optical fiber with coating material and a linear strain matrix. The results show that the longitudinal stress and strain in the fiber optic sensor are different from that distributed in the host material and depend on the strain distribution and embedded length of the optical fiber as well as the material properties of the fiber coating. The distribution of interfacial shear strain between the coating and the glass fiber and the distribution of strain/stress of the glass fiber are given.  相似文献   

12.
In this paper, the damage monitor and life prediction of carbon fiber-reinforced ceramic-matrix composites (C/SiC CMCs) have been investigated using the hysteresis dissipated energy-based damage parameter. The evolution of the interface shear stress, hysteresis dissipated energy, hysteresis dissipated energy-based damage parameter and the broken fibers fraction vs. cycle number, the fatigue life S?N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room temperature and 800 °C in air atmosphere have been analyzed. For unidirectional C/SiC, the hysteresis dissipated energy and hysteresis dissipated energy-based damage parameter first increase and then decrease with cycle number, and the fatigue limit stress decreases from 88% tensile strength at room temperature to 20% of the tensile strength at 800 °C in air atmosphere; for cross-ply C/SiC, the hysteresis dissipated energy and hysteresis dissipated energy-based damage parameter decrease with increasing applied cycles, and the fatigue limit stress decreases from 85% tensile strength at room temperature to 22% tensile strength at 800 °C in air; and for 2.5D C/SiC, the hysteresis dissipated energy and hysteresis dissipated energy-based damage parameter increases with cycle number, and the fatigue limit stress decreases from 70% tensile strength at room temperature to 25% tensile strength at 800 °C in air.  相似文献   

13.
In the mesoscopic level, concrete is regarded as three-phase composite material with cement matrix, aggregate, and the interfacial transition zone (ITZ) between them. The mechanical properties of ITZ are regarded weaker than those of the cement matrix and aggregate. In this study, a mesoscale mechanical model based on the interface specimen with a single aggregate is established to study the influence of three-phase parameters on the interface specimen under quasi-static and dynamic direct tensile loading. Besides, the loading rate effect is also considered in this study to further analyze the dynamic performance of ITZ and the whole interface specimen. According to the numerical results, it is indicated that the ITZ properties (elastic modulus and strength) play significant roles in the performance of the interface specimen under quasi-static direct tensile loading. However, the cement matrix is dominant to the mechanical properties of interface specimen under dynamic tensile loading. Moreover, the properties of ITZ (elastic modulus, strength, and DIF values) and the ITZ thickness have some influence on the dynamic performance of ITZ and the whole interface specimen under dynamic tensile loading. In contrast, the Poisson’s ratio and density of ITZ have little influence on the dynamic behavior of the whole interface specimen. Additionally, the aggregate diameter is influential to the time reaching peak stress of ITZ and the whole interface specimen, and the loading rate only influences the time to reach the peak stress of ITZ under dynamic tensile loading.  相似文献   

14.
《Composite Interfaces》2013,20(3-4):379-394
Process-induced thermal residual stresses and matrix failure of unidirectional carbon fibre reinforced composites (CFRP) have been investigated by finite element analysis (FEA). We used a partial discrete FEA model based on a unidirectional composite consisting of a microscopic area of fibres and matrix surrounded by a homogenised composite area. The FEA provided information about the stress state in the matrix and the fibre–matrix interface. The transverse strength of the composite was calculated regarding matrix failure and fibre matrix debonding. The influence of the temperature on the Young's modulus, the non-linear stress–strain behaviour and the strength of the matrix were investigated in detail. Following this approach it was possible to incorporate the resulting microresidual stresses on the transverse strength of the composite. Tensile tests of the neat resin and of the composite were performed in the temperature range of ?40°C to 60°C. The results of the FEA modelling are in good agreement with the experimental results of the transverse tests.  相似文献   

15.
A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ aluminium alloy.The loading paths of 90°out-of-phase,45°out-of-phase and 45°in-phase are utilized.The fatigue damage cumulative rules under two-level step loading of three loading paths are analyzed.By introducing a parameter which is a function of the phase lag angle between the axial and the torsional loading,a new multiaxial nonlinear fatigue damage cumulative model is proposed.The proposed model is evaluated by the experimental data for two-level loading,multi-level loading of LY12CZ aluminium alloy,and multi-level loading of 45 steel.Fatigue lives predicted are within a factor of 2 scatter band.  相似文献   

16.
泵油饱和砂岩黏弹行为的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
席道瑛  徐松林  杜赟 《物理学报》2012,61(11):119102-119102
通过Metravib热机械分析仪, 用固定静载为100 N、 正弦波动载荷为60 N的应力-应变实验方法, 在温度为-50---175 ℃, 升温速率为1 ℃/min, 频率为1---1000 Hz的条件下, 对泵油饱和长石砂岩、 彭山砂岩样品进行单轴循环加载实验, 研究了饱和多孔岩石在弹性范围内的衰减、 耗散角、 杨氏模量和弹性波波速随温度和频率的变化规律. 取得了随频率增高饱和多孔岩石的衰减峰和耗散角峰的峰位向高温方向移动的热激活弛豫规律, 并求得弛豫峰的激活能和跃迁频率, 以饱和砂岩的特点对此作出了解释. 发现岩石中矿物离子置换时的相变内耗峰, 并用动态观点解释了该相变峰. 还获得杨氏模量和弹性波波速随温度升高而下降、 随频率增高而增大的频散效应, 随温度升高频散效应有减弱的趋势. 该研究结果对理论模型研究具有指导意义, 对地震资料的解释具有实用价值.  相似文献   

17.
马氏体相变过程中低频内耗的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王业宁  邹一峰  张志方 《物理学报》1980,29(12):1535-1544
本文测出了金镉(Au-Cd)合金在正反马氏体相变过程的低频内耗峰,内耗极大值与变温速率有线性关系,但比Fe-Mn等非热弹性马氏体相变内耗的速率依赖要小得多,稳定内耗峰(变温速率为零)在每一温度的内耗值与频率无关,是静滞型损耗。内耗峰高与马氏体晶粒尺寸有关。等温转变过程也出现一个内耗-时间峰。根据以上诸实验事实,我们认为,低频马氏体相变内耗是由那些在振动应力作用下可以运动的相界面所引起的。 关键词:  相似文献   

18.
Stress transfer efficiency in model composites under dynamic loading   总被引:1,自引:0,他引:1  
The micromechanics of tension–tension fatigue loading in model single-fibre composite geometries is investigated in this paper. In an attempt to emulate the conditions encountered in full carbon fibre composites, the fibres were prestrained prior to the curing process to ensure that they were free of high residual compressive stresses as a result of resin shrinkage. The resulting specimens were grouped into two categories depending on the level of the initial fibre prestrain (case A low, case B high). The cyclic load is designed to be well below the endurance fatigue limit of the polymer matrix (∼0.6%), and to have a frequency low enough to avoid unwanted thermal post curing. Throughout the preparation procedure, as well as during fatigue loading, the fibre stress (strain) was constantly monitored by means of laser Raman spectroscopy. The fibre axial stress distributions at each fatigue step were converted to interfacial shear stress (ISS) distributions, from which important parameters such as the maximum ISS the system can accommodate, the transfer length for efficient stress built-up and the length required for the attainment of maximum ISS were obtained. The results showed that, up to 2×106 loading cycles, the main parameters which affected the stress transfer efficiency at the interface were the fibre fracture process itself and the viscoelastic behaviour of the matrix material. Received: 7 November 2001 / Accepted: 22 March 2002 / Published online: 5 July 2002  相似文献   

19.
Lin JD  Huang YZ  Yang YD  Yao QF  Lv XM  Xiao JL  Du Y 《Optics letters》2011,36(17):3515-3517
Optical bistability is realized in GaInAsP/InP coupled-circular resonator microlasers, which are fabricated by planar technology. For a coupled-circular resonator microlaser with the radius of 20?μm and a 2?μm-wide bus waveguide, hysteresis loops are observed for the output power coupling into an optical fiber versus the cw injection current at room temperature. The laser output spectra of the upper and lower states of the hysteresis loop indicate that the bistability is related to mode competitions. The optical bistability can be explained as the mode competition between the symmetry and antisymmetry coupled modes relative to the bus waveguide.  相似文献   

20.
In order to study the mechanical properties and the progressive failure process of composite under shear loading, a representative volume element (RVE) of fiber random distribution was established, with two dominant damage mechanisms – matrix plastic deformation and interfacial debonding – included in the simulation by the extended Drucker–Prager model and cohesive zone model, respectively. Also, a temperature-dependent RVE has been set up to analyze the influence of thermal residual stress. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the in-plane shear fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation. The progressive damage process and final failure mode of in-plane shear model which are based on constitute are very consistent with the observed result under scanning electron microscopy of V-notched rail shear test. Also, a transverse shear model was established as contrast in order to comprehensively understand the mechanical properties of composite materials under shear loading, and the progressive damage process and final failure mode of composite under transverse shear loading were researched. Thermal residual stress changes the damage initiation locations and damage evolution path and causes significant decreases in the strength and fracture strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号