首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider in this paper the Lagrangian dual method for solving general integer programming. New properties of Lagrangian duality are derived by a means of perturbation analysis. In particular, a necessary and sufficient condition for a primal optimal solution to be generated by the Lagrangian relaxation is obtained. The solution properties of Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused by duality gap between the primal problem and the dual problem, we introduce an equivalent reformulation for the primal problem via applying a pth power to the constraints. We prove that this reformulation possesses an asymptotic strong duality property. Primal feasibility and primal optimality of the Lagrangian relaxation problems can be achieved in this reformulation when the parameter p is larger than a threshold value, thus ensuring the existence of an optimal primal-dual pair. We further show that duality gap for this partial pth power reformulation is a strictly decreasing function of p in the case of a single constraint. Dedicated to Professor Alex Rubinov on the occasion of his 65th birthday. Research supported by the Research Grants Council of Hong Kong under Grant CUHK 4214/01E, and the National Natural Science Foundation of China under Grants 79970107 and 10571116.  相似文献   

2.
We present a novel Lagrangian method to find good feasible solutions in theoretical and empirical aspects. After investigating the concept of Lagrangian capacity, which is the value of the capacity constraint that Lagrangian relaxation can find an optimal solution, we formally reintroduce Lagrangian capacity suitable to the 0-1 multidimensional knapsack problem and present its new geometric equivalent condition including a new associated property. Based on the property, we propose a new Lagrangian heuristic that finds high-quality feasible solutions of the 0-1 multidimensional knapsack problem. We verify the advantage of the proposed heuristic by experiments. We make comparisons with existing Lagrangian approaches on benchmark data and show that the proposed method performs well on large-scale data.  相似文献   

3.
We consider optimal policies for a production facility in which several (K) products are made to stock in order to satisfy exogenous demand for each. The single machine version of this problem in which the facility manufactures at most one product at a time to minimise inventory costs has been much studied. We achieve a major generalisation by formulating the production problem as one involving dynamic allocation of a key resource which drives the manufacture of all products under an assumption that each additional unit of resource allocated to a product achieves a diminishing return of increased production rate. A Lagrangian relaxation of the production problem induces a decomposition into K single product problems in which the production rate may be varied but is subject to charge. These reduced problems are of interest in their own right. Under mild conditions of full indexability the Lagrangian relaxation is solved by a production policy with simple index-like structure. This in turn suggests a natural index heuristic for the original production problem which performs strongly in a numerical study. The paper discusses the importance of full indexability and makes proposals for the construction of production policies involving resource idling when it fails.  相似文献   

4.
pth Power Lagrangian Method for Integer Programming   总被引:1,自引:0,他引:1  
When does there exist an optimal generating Lagrangian multiplier vector (that generates an optimal solution of an integer programming problem in a Lagrangian relaxation formulation), and in cases of nonexistence, can we produce the existence in some other equivalent representation space? Under what conditions does there exist an optimal primal-dual pair in integer programming? This paper considers both questions. A theoretical characterization of the perturbation function in integer programming yields a new insight on the existence of an optimal generating Lagrangian multiplier vector, the existence of an optimal primal-dual pair, and the duality gap. The proposed pth power Lagrangian method convexifies the perturbation function and guarantees the existence of an optimal generating Lagrangian multiplier vector. A condition for the existence of an optimal primal-dual pair is given for the Lagrangian relaxation method to be successful in identifying an optimal solution of the primal problem via the maximization of the Lagrangian dual. The existence of an optimal primal-dual pair is assured for cases with a single Lagrangian constraint, while adopting the pth power Lagrangian method. This paper then shows that an integer programming problem with multiple constraints can be always converted into an equivalent form with a single surrogate constraint. Therefore, success of a dual search is guaranteed for a general class of finite integer programming problems with a prominent feature of a one-dimensional dual search.  相似文献   

5.
We study a variant of the spanning tree problem where we require that, for a given connected graph, the spanning tree to be found has the minimum number of branch vertices (that is vertices of the tree whose degree is greater than two). We provide four different formulations of the problem and compare different relaxations of them, namely Lagrangian relaxation, continuous relaxation, mixed integer-continuous relaxation. We approach the solution of the Lagrangian dual both by means of a standard subgradient method and an ad-hoc finite ascent algorithm based on updating one multiplier at the time. We provide numerical result comparison of all the considered relaxations on a wide set of benchmark instances. A useful follow-up of tackling the Lagrangian dual is the possibility of getting a feasible solution for the original problem with no extra costs. We evaluate the quality of the resulting upper bound by comparison either with the optimal solution, whenever available, or with the feasible solution provided by some existing heuristic algorithms.  相似文献   

6.
We propose a branch-and-bound algorithm of Falk–Soland's type for solving the minimum cost production-transportation problem with concave production costs. To accelerate the convergence of the algorithm, we reinforce the bounding operation using a Lagrangian relaxation, which is a concave minimization but yields a tighter bound than the usual linear programming relaxation in O(mn log n) additional time. Computational results indicate that the algorithm can solve fairly large scale problems.  相似文献   

7.
We consider the DENSE-n/2-SUBGRAPH problem, i.e., determine a block of half number nodes from a weighted graph such that the sum of the edge weights, within the subgraph induced by the block, is maximized. We prove that a strengthened semidefinite relaxation with a mixed rounding technique yields a 0.586 approximations of the problem. The previous best-known results for approximating this problem are 0.25 using a simple coin-toss randomization, 0.48 using a semidefinite relaxation, 0.5 using a linear programming relaxation or another semidefinite relaxation. In fact, an un-strengthened SDP relaxation provably yields no more than 0.5 approximation. We also consider the complement of the graph MIN-BISECTION problem, i.e., partitioning the nodes into two blocks of equal cardinality so as to maximize the weights of non-crossing edges. We present a 0.602 approximation of the complement of MIN-BISECTION.  相似文献   

8.
New approach for nonseparable dynamic programming problems   总被引:2,自引:0,他引:2  
A general class of nonseparable dynamic problems is studied in a dynamic programming framework by introducingkth-order separability. The solution approach uses multiobjective dynamic programming as a separation strategy forkth-order separable dynamic problems. The theoretical grounding on which the optimal solution of the original nonseparable dynamic problem can be attained by a noninferior solution of the corresponding multiobjective dynamic programming problem is established. The relationship between the overall optimal Lagrangian multipliers and the stage-optimal Lagrangian multipliers and the relationship between the overall weighting vector and the stage weighting vector are explored, providing the basis for identifying the optimal solution of the original nonseparable problem from among the set of noninferior solutions generated by the envelope approach.This work was supported in part by NSF Grant No. CES-86-17984. The authors appreciate the comments from Dr. V. Chankong and the editorial work by Mrs. V. Benade and Dr. S. Hitchcock.  相似文献   

9.
《Optimization》2012,61(5):627-641
We study lower bounding methods for indefinite integer quadratic programming problems. We first construct convex relaxations by D.C. (difference of convex functions) decomposition and linear underestimation. Lagrangian bounds are then derived by applying dual decomposition schemes to separable relaxations. Relationships between the convex relaxation and Lagrangian dual are established. Finally, we prove that the lower bound provided by the convex relaxation coincides with the Lagrangian bound of the orthogonally transformed problem.  相似文献   

10.
In this paper, we consider a dynamic Lagrangian dual optimization procedure for solving mixed-integer 0–1 linear programming problems. Similarly to delayed relax-and-cut approaches, the procedure dynamically appends valid inequalities to the linear programming relaxation as induced by the Reformulation-Linearization Technique (RLT). A Lagrangian dual algorithm that is augmented with a primal solution recovery scheme is applied implicitly to a full or partial first-level RLT relaxation, where RLT constraints that are currently being violated by the primal estimate are dynamically generated within the Lagrangian dual problem, thus controlling the size of the dual space while effectively capturing the strength of the RLT-enhanced relaxation. We present a preliminary computational study to demonstrate the efficacy of this approach.  相似文献   

11.
We present a method for finding exact solutions of Max-Cut, the problem of finding a cut of maximum weight in a weighted graph. We use a Branch-and-Bound setting that applies a dynamic version of the bundle method as bounding procedure. This approach uses Lagrangian duality to obtain a “nearly optimal” solution of the basic semidefinite Max-Cut relaxation, strengthened by triangle inequalities. The expensive part of our bounding procedure is solving the basic semidefinite relaxation of the Max-Cut problem, which has to be done several times during the bounding process. We review other solution approaches and compare the numerical results with our method. We also extend our experiments to instances of unconstrained quadratic 0–1 optimization and to instances of the graph equipartition problem. The experiments show that our method nearly always outperforms all other approaches. In particular, for dense graphs, where linear programming-based methods fail, our method performs very well. Exact solutions are obtained in a reasonable time for any instance of size up to n = 100, independent of the density. For some problems of special structure we can solve even larger problem classes. We could prove optimality for several problems of the literature where, to the best of our knowledge, no other method is able to do so. Supported in part by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438.  相似文献   

12.
In this paper, we apply a partial augmented Lagrangian method to mathematical programs with complementarity constraints (MPCC). Specifically, only the complementarity constraints are incorporated into the objective function of the augmented Lagrangian problem while the other constraints of the original MPCC are retained as constraints in the augmented Lagrangian problem. We show that the limit point of a sequence of points that satisfy second-order necessary conditions of the partial augmented Lagrangian problems is a strongly stationary point (hence a B-stationary point) of the original MPCC if the limit point is feasible to MPCC, the linear independence constraint qualification for MPCC and the upper level strict complementarity condition hold at the limit point. Furthermore, this limit point also satisfies a second-order necessary optimality condition of MPCC. Numerical experiments are done to test the computational performances of several methods for MPCC proposed in the literature. This research was partially supported by the Research Grants Council (BQ654) of Hong Kong and the Postdoctoral Fellowship of The Hong Kong Polytechnic University. Dedicated to Alex Rubinov on the occassion of his 65th birthday.  相似文献   

13.
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques. The work was supported by the German Research Foundation (DFG) under grant No 421/2-1.  相似文献   

14.
A supply chain network-planning problem is presented as a two-stage resource allocation model with 0-1 discrete variables. In contrast to the deterministic mathematical programming approach, we use scenarios, to represent the uncertainties in demand. This formulation leads to a very large scale mixed integer-programming problem which is intractable. We apply Lagrangian relaxation and its corresponding decomposition of the initial problem in a novel way, whereby the Lagrangian relaxation is reinterpreted as a column generator and the integer feasible solutions are used to approximate the given problem. This approach addresses two closely related problems of scenario analysis and two-stage stochastic programs. Computational solutions for large data instances of these problems are carried out successfully and their solutions analysed and reported. The model and the solution system have been applied to study supply chain capacity investment and planning.  相似文献   

15.
One of the main drawbacks of the augmented Lagrangian relaxation method is that the quadratic term introduced by the augmented Lagrangian is not separable. We compare empirically and theoretically two methods designed to cope with the nonseparability of the Lagrangian function: the auxiliary problem principle method and the block coordinated descent method. Also, we use the so-called unit commitment problem to test both methods. The objective of the unit commitment problem is to optimize the electricity production and distribution, considering a short-term planning horizon.  相似文献   

16.
We develop and test a heuristic based on Lagrangian relaxation and problem space search to solve the generalized assignment problem (GAP). The heuristic combines the iterative search capability of subgradient optimization used to solve the Lagrangian relaxation of the GAP formulation and the perturbation scheme of problem space search to obtain high-quality solutions to the GAP. We test the heuristic using different upper bound generation routines developed within the overall mechanism. Using the existing problem data sets of various levels of difficulty and sizes, including the challenging largest instances, we observe that the heuristic with a specific version of the upper bound routine works well on most of the benchmark instances known and provides high-quality solutions quickly. An advantage of the approach is its generic nature, simplicity, and implementation flexibility.  相似文献   

17.
Lagrangian relaxation is usually considered in the combinatorial optimization community as a mere technique, sometimes useful to compute bounds. It is actually a very general method, inevitable as soon as one bounds optimal values, relaxes constraints, convexifies sets, generates columns etc. In this paper we review this method, from both points of view of theory (to dualize a given problem) and algorithms (to solve the dual by nonsmooth optimization).  相似文献   

18.
We develop a branch-and-bound algorithm to solve a nonlinear class of 0–1 knapsack problems. The objective function is a product of m2 affine functions, whose variables are mutually exclusive. The branching procedure in the proposed algorithm is the usual one, but the bounding procedure exploits the special structure of the problem and is implemented through two stages: the first stage is based on linear programming relaxation; the second stage is based on Lagrangian relaxation. Computational results indicate that the algorithm is promising.  相似文献   

19.
Lagrangian relaxation is a powerful bounding technique that has been applied successfully to manyNP-hard combinatorial optimization problems. The basic idea is to see anNP-hard problem as an easy-to-solve problem complicated by a number of nasty side constraints. We show that reformulating nasty inequality constraints as equalities by using slack variables leads to stronger lower bounds. The trick is widely applicable, but we focus on a broad class of machine scheduling problems for which it is particularly useful. We provide promising computational results for three problems belonging to this class for which Lagrangian bounds have appeared in the literature: the single-machine problem of minimizing total weighted completion time subject to precedence constraints, the two-machine flow-shop problem of minimizing total completion time, and the single-machine problem of minimizing total weighted tardiness.  相似文献   

20.
In this paper the linear relaxation of the weightedr-covering problem (r-LCP) is considered. The dual problem (c-LMP) is the linear relaxation of the well-knownc-matching problem and hence can be solved in polynomial time. However, we describe a simple, but nonpolynomial algorithm in which ther-LCP is decomposed into a sequence of 1-LCP’s and its optimal solution is obtained by adding the optimal solutions of these 1-LCP’s. An 1-LCP can be solved in polynomial time by solving its dual as a max-flow problem on a bipartite graph. An accelerated algorithm based on this decomposition scheme to solve ar-LCP is also developed and its average case behaviour is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号