首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nilvadipine (NIL) solid dispersion using crospovidone (Cross-linked-N-vinyl-2-pyrolidone, cl-PVP) and methylcellulose (MC) as carriers was applied to tablet formulation. Several grades of cl-PVP and MC were used, and their influence on tablet properties such as hardness, disintegration, dissolution and chemical stability were investigated. The agitation granulation method was used for preparation of solid dispersion granules, and the granules were compressed using a rotary tableting machine, and finally the obtained tablets were coated with film. As the particle size of cl-PVP decreased, hardness and apparent solubility were increased, while dissolution rate was lowered. When a higher viscosity grade of MC was used, hardness and dissolution rate were increased, and apparent solubility did not change. All batches of tablets were chemically stable at 40 degrees C, 75% relative humidity (R.H.) for six months. Finally, tablets with enhanced dissolution properties were obtained by using Polyplasdone XL-10 and Metolose SM-25 as the grades of cl-PVP and MC, respectively. These formulation tablets showed higher solubility and dissolution rate during storage as well as initial indicating good physical stability.  相似文献   

2.
A powder solid dispersion system (SD) of indomethacin (IM) with crospovidone (CrosPVP) possesses good fluidity and can be used for tablet formulation. Tablets of SD can be prepared by direct compression and have adequate hardness and a small variation in weight. Forces during the tableting process were measured with a tableting process analyzer (TabAll) equipped with a single-punch. The pressure transmission ratio (PTR) from the upper to the lower punch and the die wall force (DWF) were examined during the tableting process. Ejection force (EF) and scraper pressure (SP) were measured for determining the capping and sticking properties during the tableting process. Adding 1% magnesium stearate (MS) to the SD resulted in high PTR and DWF values and a low EF value. PTR and DWF values increased and EF value decreased when MS and microcrystalline cellulose (MCC) were added to the SD. A thousand tablets could be manufactured without problems such as sticking or capping when 1% MS and 50% MCC were added to the SD containing 25% IM.  相似文献   

3.
The present paper aims to show whether the shrinking of the microcrystalline cellulose (MCC) tablets can be derived from underlying processes and whether these processes can be visualized on a nanoscale level. Tableting of MCC was performed on an instrumented eccentric tableting machine to a maximum relative density (ρrel,max) of 0.90 of the tablets. The apparent density of the tablets was analyzed by helium pycnometry after tableting. The breaking surface of a MCC tablet was analyzed directly after tableting continuously by video in an environmental scanning electron microscope (ESEM) at constant humidity. Further the breaking surface was analyzed by transmission electron microscopy (TEM) after freeze fracturing. The results show that firstly apparent density by helium pycnometry increases after tableting and that secondly inside the tablet the fiber strength decreased while also the gaps between the fibers increased as was visualized by ESEM. Further the results by TEM indicate that the decrease in fiber strength is caused by a parallel orientation of the MCC microcrystals which is induced by a mechanical activation due to tableting. In conclusion the measured shrinking MCC tablets after tableting is caused by processes on a nanoscale level.  相似文献   

4.
A novel single punch tablet machine was developed for a tiny amount of powder sample. This tablet machine mainly consists of upper and lower punches, single die, and conical powder feeder equipped with micro-vibrators. By using the powder feeder, mass of discharged powder can be maintained constant even if a tiny amount of powder having poor flowability is used. Motions of both upper and lower punches can be set arbitrarily. Thus, this machine enables us to prepare tablets with a tiny amount of powder sample under the same compression mechanism as conventional rotary tablet machines. Performance of the developed tablet machine was evaluated in a continuous direct tableting using a model powder with poor flowability. Thirty-four tablets (195 mg×34) having acceptable properties can be successfully prepared using no more than 10.0 g of a powder sample. We then proposed a novel in-die evaluation method of capping tendency. A new phase diagram consisting of the elastic recovery energy and the plastic deformation energy was proposed. These energies were calculated from a force-displacement profile, continuously monitored by the developed tablet machine. The results indicate that by using the new diagram the capping tendency of tablets prepared from various model powders can be well discriminated. The developed tablet machine and proposed evaluation method can contribute to a significant cost reduction and speeding up of formulation studies of oral dosage form.  相似文献   

5.
The aim of this paper is to determine temperature and structural changes caused by tableting and to deduce from the combination of temperature measurement and the determination of structural changes whether temperature increase induced by tableting contributes to tablet quality. Tablets were produced of microcrystalline cellulose (MCC), spray-dried lactose, pregelatinized starch, and dicalcium phosphate dihydrate (DCPD) with an instrumented single punch tableting machine. The temperature pattern at the surface of the tablets was measured starting directly after tableting with an infrared thermoviewer and an infrared sensor. Powder and tablets were analyzed by FT-Raman spectroscopy, the tablets were analyzed directly after tableting and after one month of storage. The crushing force of the resulting tablets was determined. For all materials a temperature increase (TI) induced by tableting was determined with both methods used. The order of the temperature increase was the same for both methods used: TI (MCC)>TI (spray-dried lactose)>TI (pregelatinized starch)>TI (DCPD). The order was also identical for the crushing force of the tablets. The extent of differences in the spectra followed the same ranking. In conclusion, the temperature increase contributed to the changes in material structure and thus temperature increase is one factor which determined crushing force and thus tablet properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The bioadhesion property of tablets consisting of chitosan (CS) and sodium hyaluronate (HA) was investigated using a lyophilized porcine dermis as a model of mucous membrane. Release phenomena of brilliant blue FCF (BBL) from the CS-HA tablets were also studied. BBL was employed as a model compound of water-soluble drugs. Strong adhesion forces were observed when the tablets were prepared from HA alone or a physical mixture of CS and HA. The adhesion of CS tablets was also obtained but it was rather weak. No effect of pH values in the media was observed on the adhesion force in these tablets. On the other hand, the release rate of BBL from CS-HA tablets was greatly affected by the change of the polymer mixing ratio, suggesting a possible interaction between CS and HA in the tablet following water penetration into the tablet.  相似文献   

7.
Direct compression is able to produce tablets at a lower cost than wet granulation and tableting method, due to a fewer items of process validation. In this study, acetaminophen was used as a medicine with various granular diameters to formulate tablets by direct compression, thus evaluating their physical properties. Consequently, direct compression was found effective in formulating tablets with excellent physical properties, with the granular diameter taken into account. It was confirmed that tablets produced by direct compression were similar in physical properties in tablets produced by wet granulation and tableting method. Further, it was suggested that use of a dry-type binder would make it possible to provide a tablet having higher content of the medicine with excellent physical properties.  相似文献   

8.
Hybrid polymer films consist of quantum dots (QDs) dispersed in a polymer matrix. A key fundamental challenge that is hindering their optimisation in optoelectronic devices such as hybrid solar cells is overcoming uncontrolled aggregation of the QDs. In an effort to direct aggregation, and trigger self-assembly, we added a bilinker ligand (1,2-ethanedithiol) to dispersed PbS QDs in polymer solutions prior to film deposition by spin casting. Turbidity studies of the PbS QD/1,2-ethanedithiol dispersions enabled a relationship to be established between the extent of 1,2-ethanedithiol-triggered QD aggregation and the nominal fractional coverage of the QDs by 1,2-ethanedithiol. The extent of aggregation (and self-assembly) increased with nominal fraction coverage. Above a value of about 1.0 QD aggregation increased substantially. TEM images showed that at low 1,2-ethanedithiol concentrations triggered assembly of network-like QD structures occurred. At high 1,2-ethanedithiol concentrations the QDs self-assembled into more-ordered micrometre-sized crystals. The results suggest that 1,2-ethanedithiol decreases the inter-QD separation in dispersion as a result of rapid ligand exchange and this process results in QD aggregation as well as self-assembly. The assembled QD structures were successfully trapped within polymer films by spin casting of PbS QD/1,2-ethanedithiol dispersions containing added polystyrene or polytriarylamine.  相似文献   

9.
In this study, in order to address the problems with manufacturing orally rapidly disintegrating tablets (ODT) containing functional (taste masking or controlled release) coated particles, such as the low compactability of coated particles and the rupture of coated membrane during compression, a novel ODT containing taste-masked coated particles (TMP) in the center of the tablets were prepared using one-step dry-coated tablets (OSDrC) technology. As a reference, physical-mixture tablets (PM) were prepared by a conventional tableting method, and the properties of the tablets and the effect of compression on the characteristics of TMP were evaluated. OSDrC was found to have higher tensile strength and far lower friability than PM, but the oral disintegration time of OSDrC is slightly longer than that of PM following high compression pressure. Consequently, OSDrC approaches the target tablet properties of ODT, whereas PM does not. The deformation of TMP in OSDrC due to compression is slight, and the release rate of acetaminophen (AAP) from OSDrC is the same as from TMP. However, TMP on the surface of PM are considerably deformed, and the release rate of AAP from PM is faster than from TMP. These findings suggest that OSDrC technology is a useful approach for preparing ODT containing functional coated particles. Furthermore, we demonstrate that the elastic recovery of tablets can affect differences in the properties of OSDrC, PM and placebo tablets (PC).  相似文献   

10.
The optimum formulation, manufacturing technology, and analytical techniques were developed for an atypical neuroleptic Dilept in a solid dosage form (tablets). It has been shown that the direct compression of a tableting mass with a 1 : 9 ratio of substance to ludipress will be the optimum method for manufacturing these tablets. The proposed procedures for identifying and determining the impurity content and dosage uniformity, as well as for quantitatively determining the substance content in a tablet, are based on the HPLC method. UV spectrophotometry is recommended as a method for the quantitative assessment of the therapeutic substance released from tablets during the dissolution test. Using the accelerated aging test, it has been shown that the quality of tablets during a period equivalent to a two-year shelf life under natural storage conditions is preserved.  相似文献   

11.
A novel floating sustained release tablet having a cavity in the center was developed by utilizing the physicochemical properties of L-menthol and the penetration of molten hydrophobic polymer into tablets. A dry-coated tablet containing famotidine as a model drug in outer layer was prepared with a L-menthol core by direct compression. The tablet was placed in an oven at 80°C to remove the L-menthol core from tablet. The resulting tablet was then immersed in the molten hydrophobic polymers at 90°C. The buoyancy and drug release properties of tablets were investigated using United States Pharmacopeia (USP) 32 Apparatus 2 (paddle 100 rpm) and 900 ml of 0.01 N HCl. The L-menthol core in tablets disappeared completely through pathways in the outer layer with no drug outflows when placed in an oven for 90 min, resulting in a formation of a hollow tablet. The hollow tablets floated on the dissolution media for a short time and the drug release was rapid due to the disintegration of tablet. When the hollow tablets were immersed in molten hydrophobic polymers for 1 min, the rapid drug release was drastically retarded due to a formation of wax matrices within the shell of tablets and the tablets floated on the media for at least 6 h. When Lubri wax? was used as a polymer, the tablets showed the slowest sustained release. On the other hand, faster sustained release properties were obtained by using glyceryl monostearate (GMS) due to its low hydrophobic nature. The results obtained in this study suggested that the drug release rate from floating tablets could be controlled by both the choice of hydrophobic polymer and the combined use of hydrophobic polymers.  相似文献   

12.
We attempted to make the rapidly dissolving tablet (Tab) containing solid dispersion particles (SD) with indomethacin (IMC) and porous silica (Sylysia350) as carrier prepared by using spray-drying technique. Rapidly dissolving tablet was formulated with mannitol as a diluent and low substituted hydroxypropylcellulose (L-HPC) or partly pre-gelatinized starch (PCS) as a disintegrant. The percent dissolved from Tab (SD) was higher than that of tablet containing physical mixture (PM) at 20 min. Nearly 100% of drug in Tab (SD) was dissolved within 60 min, while the drug dissolution of Tab (PM) was not completed at the same time period. In addition, the tensile strength of Tab (SD) was much higher than that of Tab (PM). Adding L-HPC in Tab (SD) (Tab (SD-L-HPC)), the percent dissolved from Tab (SD-L-HPC) at 5 min became much higher than that from Tab (SD). The dissolution profile of IMC from Tab (SD-L-HPC) was almost the same irrespective of the compression pressure, while the tensile strength of tablet increased with increasing the compression pressure. In comparing the compaction property of these tablets by observing the ratio of residual die wall pressure (RDP) to maximum die wall pressure (MDP) (RDP/MDP), it was found that addition of L-HPC in the tablet formulation improved compactibility. In case that PCS was formulated as disintegrant, Tab (SD-PCS), similar improvement in the dissolution profile and tensile strength was observed, though the dissolution rate of IMC from Tab (SD-PCS) was slightly lower than that from Tab (SD-L-HPC) irrespective of the compression pressure.  相似文献   

13.
In the current study Ibuprofen was embedded in a methacrylate copolymer (Eudragit® EPO) matrix to produce solid dispersions by hot-melt extrusion (HME) processing. The obtained granules were incorporated in orally disintegrating tablets (ODTs). The tablets were developed by varying the ratio of superdisintegrants such as sodium croscarmellose and crosslinked polyvinylpyrrolidone grades while a direct compression process was used to compress the ODTs under various compaction forces to optimize tablet robustness. The properties of the compressed tablets which included porosity, hardness, friability and dissolution profiles were further evaluated and compared with Nurofen® Meltlet ODTs. The taste and sensory evaluation in human volunteers demonstrated excellence in masking the bitter active and improved tablet palatability.  相似文献   

14.
An important issue in the aqueous coating process is dispersion stability. An unstable dispersion results in aggregation of the colloidal particles, thereby affecting the film coating process. In the coating suspension containing pigment, a latex for aqueous film coating might interact with pigment, resulting in unstable dispersion. We therefore conducted a stability investigation in a mixed dispersion including latexes, EudragitL30D-55 (A-latex), EudragitRL30D (C-latex) and EudragitNE30D (N-latex) and pigments, titanium dioxide and iron oxide yellow. An aggregation of the dispersion containing A-latex was observed at pH 2. Regarding the dispersions with C-latex and N-latex, no aggregation was observed in the range pH 2-11. We calculated total interaction energy between latex-latex particles, pigment-pigment particles and latex-pigment particles based on DLVO theory. The calculated results explained two mechanisms of the stable mixed dispersion. The first was that the individual latex particle and the pigment particle dispersed without aggregation in the mixed dispersion because of the electrostatic interaction. The next was that the latexes adsorbed onto the surface of the pigments, making electrostatically stable heterocoaggregates. We also calculated the binding constant of iron oxide yellow for C-latex at pH 10. The value of the constant was determined to be 1.1 x 10(-2).  相似文献   

15.
The purpose of this study was establishing a solid dispersion formulation containing a low glass transition temperature (T(g)) and poorly water-soluble drug. Drug/polymer blends with differing physicochemical stabilities and oral absorption were prepared from copolyvidone (PVP-VA), polyvinylpyrrolidone (PVP) or hydroxypropylmethylcellulose (HPMC) by a hot melt extrusion. HPMC drastically increased the drug oral absorption property, while PVP-VA or PVP stabilized solid dispersions during storage by increasing the T(g) in proportion to polymer concentration. Experimental T(g) values corresponded closely with theoretical T(g) values; indeed, the T(g) values of solid dispersion with HPMC did not increase significantly compared to the T(g) value for the drug alone. A solid dispersion formulation incorporating two different polymers-HPMC and either PVP-VA or PVP-maintained increased T(g), physicochemical stability, solubility, and bioavailability of the solid dispresions owing to each polymer. These findings suggested that both oral absorption and physicochemical stability of low-T(g) drug will be improved using less amount of solid dispersion of combined two polymers than polymer alone.  相似文献   

16.
Nicergoline, a semisynthetic ergot derivative, which, in its crystalline state, is insoluble in water, was dispersed in polyvinylpyrrolidone K30 (PVP K30) to improve drug particle dissolution. Preformulation studies were carried out initially by differential scanning calorimetry and X-ray powder diffraction in order to predict the conditions and the possibility to actually obtain solid dispersions by mixing the two components at different proportions. Solid dispersions were finally prepared by dissolving nicergoline and PVP K30 in chloroform that was next evaporated under reduced pressure. Under these conditions, an amorphous powder was recovered in every proportion of the two components. Nicergoline demonstrated to be physically and chemically stable for 1 year. The dissolution studies revealed a very high dissolution rate of nicergoline from solid dispersions only lower than the pure amorphous form. This is the consequence of the molecular dispersion of nicergoline in the polymer that enhances the rate of drug release from the polymer.  相似文献   

17.
The aim of this study was to prepare, using taste-masked granules, tablets which can rapidly disintegrate in saliva (rapidly disintegrating tablet), of drugs with bitter taste (pirenzepine HCl or oxybutynin HCl). The taste-masked granules were prepared using aminoalkyl methacrylate copolymers (Eudragit E-100) by the extrusion method. None of the drugs dissolved from the granules (% of dissolved, < 5%) even at 480 min at pH 6.8 in the dissolution test. However, the drugs dissolved rapidly in the medium at pH 1.2 in the dissolution test. Rapidly disintegrating tablets were prepared using the prepared taste-masked granules, and a mixture of excipients consisting of crystalline cellulose (Avicel PH-102) and low-substituted hydroxypropylcellulose (L-HPC, LH-11). The granules and excipients were mixed well (mixing ratio by weight, crystalline cellulose: L-HPC = 8:2) with 1% magnesium stearate, and subsequently compressed at 500-1500 kgf in a single-punch tableting machine. The prepared tablets (compressed at 500 kgf) containing the taste-masked granules have sufficient strength (the crushing strength: oxybutynin tablet, 3.5 kg; pirenzepine tablet, 2.2 kg), and a rapid disintegration time (within 20 s) was observed in the saliva of healthy volunteers. None of the volunteers felt any bitter taste after the disintegration of the tablet which contained the taste-masked granules. We confirmed that the rapidly disintegrating tablets can be prepared using these taste-masked granules and excipients which are commonly used in tablet preparation.  相似文献   

18.
The casted films of aqueous dispersions of Eudragit NE30 D and Eudragit L30 D-55 containing pore former were prepared. The study investigated the influence of pore former on basic model drug clarithromycin release, water uptake and water vapor permeability from casted film prepared from the blends of neutral polymer dispersion of Eudragit NE30 D and enteric polymer dispersion of Eudragit L30 D-55. This study was concluded that pore former hydroxypropyl methyl cellulose, lactose, polyethylene glycol (PEG) and polyvinyl pyrrolidon (PVP) was released at the beginning of the release process, the rate and extent of water uptake of the polymeric films were much higher in phosphate buffer pH 6.8 than in pH 5.0 and the concentration of pore former have a significant influence on the permeability to water vapour.  相似文献   

19.
Solid dispersions of ketoprofen in nanofibers were prepared using electrospinning process with polyvinylpyrrolidone as the filament-forming polymer. Results from differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared suggested that ketoprofen was well distributed in the polymer nanofibers in an amorphous solid dispersion state due to the hydrogen bonding between them. In vitro wetting and dissolution tests showed that the nanofibers could absorb water from the wet papers and wetted within several seconds, and ketoprofen could be exhausted within 30 seconds. Electrospinning is a useful process for the preparation of solid dispersions.  相似文献   

20.
The aim of this study was to study tablet formation of polyethylene oxides (PEOs) with different molecular masses by means of 3D modeling and comparing the results to those of other more traditional techniques, such as Heckel analysis, analysis by the pressure- time function and energy analysis. The molecular masses ranged between 400,000 and 7,000,000 Da. Material properties, such as water content, particle size and morphology, and glass transition temperature were also studied. To complete this study, elastic recovery dependent on maximum relative density and time were determined. Furthermore, the crushing force of the tablets and their morphology were analyzed. The PEOs consist of smooth edged particles of irregular shape; the particle size is similar to one type of MCC, namely Avicel PH 200. The PEOs are much more ductile during compression than MCC. Elastic recovery after tableting is higher than that for tablets made from MCC and continues for some time after tableting. The crushing force of the resulting tablets is low. In conclusion, with regards to direct compression the PEOs do not appear to be useful as sole tableting excipients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号