首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric dipole moments μ in benzene at 30 °C have been determined (Table 3) on methyl, ethyl, isopropyl and t-butyl esters of the title compounds to determine steric effects on conformation in solution. Experimental moments were compared with those calculated for various possible conformations by a 3-dimensional vectorial addition method using bond moments and bond angles. The experimental moments for the alkyl acetates were best interpreted in terms of an out-of-plane deviation of the alkyl group from an s-trans conformation caused by steric interference between the alkyl group and the carbonyl oxygen and increasing in the series from methyl to t-butyl. The dihedral angles 0 (deviations) were calculated using a vector addition method. An increase in the moments of the benzoate series over the acetates was interpreted in terms of conjugative interaction between phenyl and carbonyl groups. Angles of twist φ for the benzoates and trimethylbenzoates were calculated using the Braude-Sondheimer equation. A decrease in the moments of the methyl, ethyl, and isopropyl trimethyl-benzoates as compared with the benzoates was interpreted in terms of steric interference between ortho methyls and both oxygens. The decrease in the angles of twist from methyl to t-butyl for the trimethylbenzoates was tentatively explained by greater steric interaction of the alkyl group with both carbonyl oxygen and ortho methyls, which forces adoption of a more coplanar arrangement between the ring and the carbonyl group than for the other alkyl derivatives, this interaction increasing with the size of the alkyl group. Dipole moments for 2,3,5,6-tetramethylbenzoates were nearly the same as for corresponding trimethyl-benzoates, thus showing no conclusive evidence for operation of a “buttressing” effect.  相似文献   

2.
固体填料对聚乙二醇结晶性的影响   总被引:2,自引:0,他引:2  
采用DSC、WAXD技术研究了固体填料 (Al粉、奥克托金 (HMX)、高氯酸铵 (AP) )对聚乙二醇结晶性的影响 .Al粉及HMX不影响混合物中PEG的结晶度及晶体结构 ,高氯酸铵与PEG之间存在较强的相互作用 ,降低了混合物中PEG的结晶度 .某些金属盐也与PEG之间存在类似的相互作用 ,这种相互作用以金属盐溶于PEG熔体为前提 .高氯酸铵及金属盐导致PEG结晶度的降低是由于其阳离子与PEG分子链中的氧原子形成了络合物 ,增强了二者之间的相互作用 .  相似文献   

3.
A series of poly(ethylene glycol)–polyurethane (PEG–PU)/sodium perchlorate (NaClO4) solid electrolytes were prepared, and their properties were characterized with Fourier transform infrared spectroscopy, differential scanning calorimetry, complex impedance analysis, and atomic force microscopy. Results showed that the oxygen atoms of carbonyl and ether oxygen groups had different activities on cations. Both carbonyl and ether oxygen groups participated in the ionic‐transport process in PU‐based electrolytes. There existed a coordination competition between sodium cations and different oxygen atoms in soft and hard segments of PU. For the PEG–PU/NaClO4 system investigated, amorphous regions and interfacial regions between the amorphous and microcrystalline phases were responsible for ionic conduction. A new ionic‐transport mechanism, based on the existence of conduction pathways not only in amorphous regions but also in interfacial regions of microphase‐separated PU‐based electrolytes, is sketched. Moreover, at a particular concentration of doped salt (EO/NaClO4 12), the PEG–PU/NaClO4 complex revealed a phase‐transition point in the morphology and exhibited minimum apparent activation energy and maximum ionic conductivity. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1246–1254, 2001  相似文献   

4.
In the present paper, the structure and conductivity for the complex of sulfonated poly(phenylene oxide) lithium (SPPOLi) and poly(ethylene oxide) (PEG) were studied. Glass transition temperature change determined by differential scanning calorimeter analysis desmonstrated that the two components had some compatibility. X-ray diffraction showed that PEG could decrease the regularity of SPPOLi to some extent. The compatibility and PEG's effect on the regularity may be due to the interaction between the lithium ions of SPPOLi and the oxygen atoms of PEG. Under polarization by electric field, the bands between lithium ions and sulfonation groups relaxed. Meanwhile, the complexation of oxygen atoms could enhance the dissociation of the polymeric lithium salts. Then lithium ions were transported in the process of alternate complexing and decomplexing. The action between lithium ions and oxygen atoms could explain the improvement on the conductivity of SPPOLi.  相似文献   

5.
Polyethylene glycol (PEG) 20000 in low-density polyethylene has been determined using column switching and inverse temperature programming in reversed-phase packed capillary liquid chromatography with evaporative light scattering detection. PEG 20000 was extracted into water from the polyethylene dissolved in toluene and PEG 35000 was added as an internal standard (I.S.). The samples in aliquots of 100 microl were reconcentrated on the enrichment column using a loading mobile phase of acetonitrile-water (3:97, v/v) at a flow-rate of 75 microl/min for 3 min, then back-flushed and separated on the analytical column with acetonitrile-THF-water (40:5:55, v/v) as mobile phase. The column temperature was reduced from 68 to 55 degrees C with a ramp of -1.5 degrees C/min, held constant for 3 min and then reduced further to 45 degrees C with a -1.5 degrees C/min ramp and kept constant for 1 min. The analysis runtime was 20 min. The recovery of PEG 20 000 was determined to 65.1% with 2.8% RSD and the mass limit of detection of PEG 20 000 was 1.25 microg. The within-assay and between day precision of the retention times of both PEG 20000 and PEG 35000 displayed RSD of less than 1.1% (n = 9), while the overall area ratio RSD of 100 microg/ml PEG 20000 over PEG 35000 was 1.3% (n = 9). The method was linear within the investigated concentration range 25-125 microg/ml (R2 = 0.9983). In addition, a mixture of PEG 4000, 8000, 10000, 20000 and 35000 was analysed on the system to demonstrate the possibility of analysing several PEGs in a sample with the use of temperature gradient elution.  相似文献   

6.
The interaction of cesium perfluorooctanoate (CsPFO) with poly(ethylene glycol) (PEG) of different molecular weight (300 < or = MW < or = 20000 Da) has been investigated at 298.15 K by isothermal titration calorimetry (ITC), density, viscosity, and conductivity measurements. Calorimetric titrations exhibited peculiar trends analogous to those already observed for sodium dodecyl sulfate (SDS). Micelles of the perfluorosurfactant, as compared to those of SDS, yield complexes with the polymer of similar thermodynamic stability but are able to interact with shorter PEG oligomers. The average number of surfactant molecules bonded per polymer chain at the saturation is about twice that observed for SDS. ITC data at 308.15 K indicate a larger thermodynamic stability of the aggregates but an almost constant stoichiometry. The peculiar thermal effects and the viscosity trend observed during the titration of an aqueous PEG solution with the surfactant appear consistent with a conformational change of the polymer. The PEG chain would evolve from a strained to an expanded conformation, induced by the growing of the surfactant micellar clusters bonded to the polymer, as suggested in a previous study of the PEG/SDS/H2O system.  相似文献   

7.
The photophysical properties of the 5-(4-pyridyl)-10,15,20-tri(4-methyloxyphenyl)porphyrins covalently linked to polyethylene glycol – PEG of different molecular weights (35000, 20000 and 8000) dissolved in dimethylsulfoxide were studied. The singlet and triplet states of the porphyrin species behavior were discussed in terms of fluorescence and thermal relaxation processes. The absorption, fluorescence and photothermal experiments showed that in the porphyrins linked to the PEG systems in dimethylsulfoxide the dye moieties occur in weakly interacting dimers. The triplet state enhancement in the 5-(4-pyridyl)-10,15,20-tri(4-methyloxyphenyl)porphyrins covalently linked to PEG was discussed.It was shown that even that the weak interaction of the porphyrin species in the covalent systems with PEG is not detectable by the absorption and only slightly by fluorescence, it is possible to be performed by the complementary spectroscopic methods like photoacoustics and photothermal time resolved spectroscopy.  相似文献   

8.
The association between acrylic esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) and some monohydric (primary, secondary and tertiary) alcohols in non-polar solvents, viz. n-heptane, CCl4 and benzene has been investigated by means of FTIR spectroscopy. The most likely association complex between alcohol and acrylic ester is 1:1 stoichiometric complex through the hydroxyl group of alcohol and the carbonyl group of acrylic ester. The formation constant of the 1:1 complexes has been calculated using Nash method. It appears that the primary alcohols have larger formation constant than the secondary and tertiary alcohols. The results show that the proton donating power of the alcohols decreases in the order primary>secondary>tertiary and the association constant increases with the increase in carbon chain of the alkyl group of acrylic esters and alcohols. Also the results show a significant dependence of the association constant upon the solvents used. The solvent effect on the formation of hydrogen bond equilibria is discussed in terms of specific interaction between the solute and solvent.  相似文献   

9.
It was established by x-ray diffraction analysis that the crystalline title compound exists as a dimer formed by two paired potassium ions bonded to the oxygen atoms of the carboxy group and the coordinated oxygen atoms of the carbonyl groups. The solvate of the dimer with the composition 2C18H22NO4K·3H2O·CH3COCH3 is the crystallochemically independent structural unit. A shift of the electron density toward the carbonyl groups and the formation of a strong hydrogen bond between NH and the oxygen atom of the carboxylate group are observed.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 666–672, May, 1980.  相似文献   

10.
The intermolecular interaction energy of the model system of the water-crownophane complex was analyzed. The water molecule has four hydrogen bonds, with the two hydrogen-donating phenolic hydroxy groups and two hydrogen-accepting oxygen atoms of the poly-oxyethylene chain of the crownophane in the complex. The MP2/6-311G(2d,2p) level calculations of the model system of the complex (hydrogen donating unit + hydrogen accepting unit + water) indicate that the binding energy of the water is 21.85 kcal/mol and that the hydrogen bond cooperativity increases the binding energy as much as 3.67 kcal/mol. The calculated interaction energies depend on the basis set, while the basis set dependence of the cooperative increment is negligible. Most of the cooperative increment is covered by the HF level calculation, which suggests that the major source of the hydrogen bond cooperativity in this system has its origin in induction. The BLYP/6-311G** and PW91/6-311G** level interaction energies of the model system are close to the MP2/6-311G** interaction energies, which suggests that the DFT calculations with these functionals are useful methods to evaluated the interactions of hydrogen bonded systems.  相似文献   

11.
The X-ray crystal structure of the flavoenzyme cholesterol oxidase, SCOA (Streptomyces sp.SA-COO) has been determined to 0.95 A resolution. The large size (55kDa) and the high-resolution diffraction of this protein provides a unique opportunity to observe detailed electronic effects within a protein environment and to obtain a larger sampling for which to analyze these electronic and structural differences. It is well-known through spectroscopic methods that peptide carbonyl groups are polarized in alpha-helices. This electronic characteristic is evident in the sub-Angstrom electron density of SCOA. Our analysis indicates an increased tendency for the electron density of the main chain carbonyl groups within alpha-helices to be polarized toward the oxygen atoms. In contrast, the carbonyl groups in beta-sheet structures tend to exhibit a greater charge density between the carbon and oxygen atoms. Interestingly, the electronic differences observed at the carbonyl groups do not appear to be correlated to the bond distance of the peptide bond or the peptide planarity. This study gives important insight into the electronic effects of alpha-helix dipoles in enzymes and provides experimentally based observations that have not been previously characterized in protein structure.  相似文献   

12.
The proton‐binding behavior of solvated tetraamido/diamino quaternized macrocyclic compounds with rigid phenyl and flexible phenyl bridges in the absence or presence of an external electric field is investigated by molecular dynamics simulation. The proton can be held through H‐bonding interactions with the two carbonyl oxygen atoms in macrocycles containing rigid (phenyl) and flexible (propyl) bridges. The solute–solvent H‐bonding interactions cause the macrocyclic backbones to twist to different extents, depending on the different bridges. The macrocycle with the rigid phenyl linkages folds into a cuplike shape due to π–π interaction, while the propyl analogue still maintains the ellipsoidal ringlike shape with just a slight distortion. The potential energy required for proton transfer is larger in the phenyl‐containing macrocycle than in the compound with propyl units. When an external electric field with a strength of 2.5 V nm?1 is exerted along the carbonyl oxygen atoms, a difference in proton encircling is exhibited for macrocycles with rigid and flexible bridges. In contrast to encapsulation of a proton in the propyl analogue, the intermolecular solute–solvent H‐bonding and intramolecular π–π stacking between the two rigid phenyl spacers leads to loss of the proton from the highly distorted cuplike macrocycle with phenyl bridges. The competition between intra‐ and intermolecular interactions governs the behavior of proton encircling in macrocycles.  相似文献   

13.
BaWO4纳米线束的合成及其光学性质研究   总被引:1,自引:0,他引:1  
High quality BaWO4 nanowire bundles have been synthesized in toluene-sodium dodecylbenzene sulphonate (SDBS)-small amount PEG20000-H2O reverse micelle system. XRD result shows that the obtained BaWO4 belongs to tetragonal phase with scheelite structure. TEM results demonstrate that the obtained BaWO4 nanowire bundles have high aspect-ratio (>650). The experimental results confirm that PEG20000 plays a key role for the formation of BaWO4 nanowire bundles. Other factors which influence the morphology and crystallinity of the product are also briefly discussed. Moreover, the obtained BaWO4 nanowire bundles exhibit strong photoluminescence centered at 397.3 nm with λex=343.5 nm at room temperature, which is different from the bulk BaWO4 crystals.  相似文献   

14.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

15.
Diels-Alder reactions of acyclic oligoether-substituted quinones 1b, 1c, 2b, and 2c with cyclopentadiene were accelerated by the addition of alkali and alkaline earth metal perchlorates, and scandium trifluoromethane sulfonate (k(c)/k(f) = 1.2-23 for univalent cations, 11-1160 for divalent cations, and 1700-192 000 for Sc(3+), where k(c) and k(f) are the rate constants for the metal complexed and uncomplexed quinones, respectively). The shorter-armed 1a, 2a, and 3, however, exhibited no such acceleration effects. The rate accelerations can be rationalized by the FMO consequence in which the bound guest cation withdraws electron density from the quinone dienophile and lowers the LUMO energy suitable for the orbital interaction with the HOMO of cyclopentadiene. Despite the poor cation selectivity, these acyclic oligoether quinones showed larger rate accelerations than the relevant quinocrown ethers 4 (k(c)/k(f) = 1.3-3.0 for univalent cations, 5.0-160 for divalent cations, and 100-2020 for Sc(3+)). The effective electron withdrawal, which leads to the enhanced rate acceleration, can be caused by the direct interaction between the metal cation accommodated in the pseudo-cyclic oligoether linkage and the quinone carbonyl oxygen, as indicated by (1)H NMR spectroscopy. In addition, the larger rate enhancement is rather achieved in the complex with low binding constant K, because the strong encapsulation of metal cation by the oligoether chain diminishes the crucial interaction to the quinone carbonyl oxygen. As a whole, the smaller and higher valent cations tend to bring about notable rate acceleration due to the more enhanced ion-dipole interaction with the quinone carbonyl oxygen. Spectroscopic titration (absorption and (1)H NMR) and kinetic experiments indicated that only the longest di-armed 2c constructs 1:1, and then 1:2, host/guest complexes with Ca(2+), Sr(2+), and Ba(2+). These 1:2 complexes exhibited the most effective acceleration for the respective metal cations.  相似文献   

16.
Peptide-cyclodextrin and protein-cyclodextrin host-guest complexes are becoming more and more important for industrial applications, in particular in the fields of pharmaceutical and food chemistry. They have already deserved many experimental investigations although the effect of complex formation in terms of peptide (or protein) structure is not well-known yet. Theoretical calculations represent a unique tool to analyze such effects, and with this aim we have carried out in the present investigation molecular dynamics simulations and combined quantum mechanics-molecular mechanics calculations. We have studied complexes formed between the model Ace-Phe-Nme peptide and the β-cyclodextrin (β-CD) macromolecule, and our analysis focuses on the following points: (1) how is the peptide structure modified in going from bulk water to CD environment (backbone torsion angles), (2) which are the main peptide-CD interactions, in particular in terms of hydrogen bonds, (3) which relative peptide-CD orientation is preferred and which are the structural and energetic differences between them, and (4) how the electronic properties of the peptide changes under complex formation. Overall, our calculations show that in the most stable configuration, the backbone chain lies in the narrow rim of the CD. Strong hydrogen bonds form between the H atoms of the peptidic NH groups and oxygen atoms of the secondary OH groups in the CD. These and other (weaker) hydrogen bonds formed by the carbonyl groups reduce considerably the flexibility of the peptide structure, compared to bulk water, and produce a marked increase of the local dipole moment by favoring configurations in which the two C═O bonds point toward the same direction. This effect might have important consequences in terms of the peptide secondary structure, although this hypothesis needs to be tested using larger peptide models.  相似文献   

17.
Theoretical investigation of the conformations of p-t-butylcalix(4)arene and its toluene complex were carried out. The hydrogen bonding potential function suitable for the cyclic hydrogen bonds of calix(4)arene was obtained by least-squares fitting to the ab initio MO calculation results. It was found that the calix(4)arene has an enough flexibility for the complexation with molecules a little larger than the pore composed of the t-butyl groups; the complex formation does not need any activation energy. During the complex formation, the conformational changes of the calix(4)arene are small. Contribution of the dispersion interaction to the complexation energy is predominant. The cyclic hydrogen bond may not induce the allosteric effect at the binding site.  相似文献   

18.
The interaction of tris(4-fluorophenyl)antimony with chloroacetic, 4-nitrophenylacetic, and benzoic acids in diethyl ether in the presence of tert-butyl hydroperoxide has yielded tris(4-fluorophenyl)antimony dicarboxylates, their Sb atoms bearing distorted trigonal bipyramid coordination with the carboxylate ligands in the axial positions. The intramolecular contacts between Sb atom and carbonyl O atom are formed in the molecules of the products. Their crystal packing is determined by weak intermolecular hydrogen bonds of the H···F and H···O=C types.  相似文献   

19.
Three different squaraine tethered bichromophoric podands 3a-c with one, two, and three oxygen atoms in the podand chain and an analogous monochromophore 4a were synthesized and characterized. Among these, the bichromophores 3a-c showed high selectivity toward alkaline earth metal cations, particularly to Mg(2+) and Ca(2+) ions, whereas they were optically silent toward alkali metal ions. From the absorption and emission changes as well as from the Job plots, it is established that Mg(2+) ions form 1:1 folded complexes with 3a and 3b whereas Ca(2+) ions prefer to form 1:2 sandwich dimers. However, 3c invariably forms weak 1:1 complexes with Mg(2+), Ca(2+), and Sr(2+) ions. The signal output in all of these cases was achieved by the formation of a sharp blue-shifted absorption and strong quenching of the emission of 3a-c. The signal transduction is achieved by the exciton interaction of the face-to-face stacked squaraine chromophores of the cation complex, which is a novel approach of specific cation sensing. The observed cation-induced changes in the optical properties are analogous to those of the "H" aggregates of squaraine dyes. Interestingly, a monochromophore 4a despite its binding, as evident from (1)H NMR studies, remained optically silent toward Mg(2+) and Ca(2+) ions. While the behavior of 4a toward Mg(2+) ion is understood, its optical silence toward Ca(2+) ion is rationalized to the preferential formation of a "Head-Tail-Tail-Head" arrangement in which exciton coupling is not possible. The present study is different from other known reports on chemosensors in the sense that cation-specific supramolecular host-guest complexation has been exploited for controlling chromophore interaction via cation-steered exciton coupling as the mode of signaling.  相似文献   

20.
铜(II)-锰(II)四核配合物的合成、晶体结构和磁性   总被引:1,自引:1,他引:1  
(中国地质大学地质实验室, 北京100083) 报道了一个草酰胺桥连的四核Cu(II)Mn(II)配合物[Mn(CuL)3][Mn(H2O)6][N(CN)2]2(ClO4)2 4H2O (L为1,4,8,11-四氮杂环十四烷-2,3-二酮) (C34H74Cl2Cu3Mn2N18O24, Mr = 1490.51)的合成、晶体结构和磁性。配合物属于单斜晶系, 空间群为C2/c, 晶胞参数如下:a = 22.295(5), b = 12.852(3), c = 20.109(4) , = 90.47(3), V = 5762(2) 3, Dc = 1.718 g/m3, Z = 4, F(000) = 3068, m = 1.701mm-1, R = 0.0915, wR = 0.1810 (based on F2)。3个中性Cu(II)大环配合物通过6个氧原子与Mn(II)配位, MnO键长范围为2.190(6)~2.208(5) 拧Mn(CuL)3]2+通过高氯酸根离子连接起来形成一个二维层。高氯酸根的氧原子与CuII键长范围为2.902~2.996 , 为弱相互作用。[Mn(H2O)6]2+, N(CN)2-和H2O位于层间, 并通过氢键连成三维网络结构。磁性研究表明CuII-MnII离子间通过草酰胺传递反铁磁相互作用, 用基于各向同性的Hamiltonian算符 = 2JMnCuMn(Cu1 + Cu2 + Cu3)进行磁性拟合得到磁耦合常数JCuMn =-17 cm-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号