首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the title compound, [Ni(C8H20N4)(C12H8N2)](ClO4)2, has been determined by X-ray diffraction. The Ni(II) ion is six coordinated with four nitrogen atoms of the tetradentate macrocyclic ligand and two nitrogen atoms of the bidentate ligand in a distorted octahedron geometry. The folded tetradentate macrocyclic ligand adopts a configuration having four five-membered chelate rings in distorted eclipsed conformations. The four hydrogen atoms of the amine groups of the macrocyclic ligand are on the same side towards the bidentate ligand.  相似文献   

2.
The new versatile multidentate nonchelating ligand 1,2-bis[(2-pyr-imidinyl)-sulfanylmethyl]benzene (bpsb) was designed and prepared for supramolecular syntheses. Self-assembly between silver nitrate and the bpsb ligand resulted in the polymer [Ag4(bpsb)2-(NO3)4]n (1) with a single-stranded helical chain structure. Each bpsb ligand in 1 acts as a tetradentate ligand, in which two sulfur atoms and two nitrogen atoms from different pyrimidine groups coordinate to four Ag atoms in four different directions. The nitrate anions serve as a template for the formation of the helix and are either embedded in the interior of the helix or located in the flank of the helix. Self-assembly between silver perchlorate and the bpsb ligand under the same conditions gave rise to the polymer [Ag2(bpsb)3(ClO4)2]n (2) comprising a two-dimensional lamellar network containing crownlike cavities. The silver atoms in two adjacent layers are arranged staggered in 2. The two-dimensional lamellar network comprising isolated cavities of [Ag6(bpsb)6] is very different from that of usual honeycomb structures.  相似文献   

3.
Abstract

The coordination properties of 5-amino-1,3,4-thiadiazole-2-sulfonamide (Hats) with Cu(II), Ni(II) and Zn(II) ions, are analyzed. Although the ligand presents several donor atoms, we have only observed three coordination behaviors: (i) as a monodentate ligand through the Nsulfonamido atom, (ii) as a bridging ligand linking the metal ions through the Nsulfonamido and Nthiadizole atoms and (iii) as a bridging ligand linking metal ions through the N and O atoms of the sulfonamidate group. It is noteworthy that coordination mode (iii) is observed for the first time in heterocyclic sulfonamides complexes. In addition, the conformation of the Hats as counter-ion is analyzed and compared with the conformations that the ligand adopts in metal complexes.  相似文献   

4.
Adams RD  Smith JL 《Inorganic chemistry》2005,44(12):4276-4281
The reaction of Rh(4)(CO)(12) with Ph(3)GeH at 97 degrees C has yielded the first rhodium cluster complexes containing bridging germylene and germylyne ligands: Rh(8)(CO)(12)(mu(4)-GePh)(6), 9, and Rh(3)(CO)(5)(GePh(3))(mu-GePh(2))(3)(mu(3)-GePh)(mu-H), 10. When the reaction is performed under hydrogen, the yield of 9 is increased to 42% and no 10 is formed. Compound 9 contains a cluster of eight rhodium atoms arranged in the form of a distorted cube. There are six mu(4)-GePh groups bridging each face of this distorted cube. Four of the rhodium atoms have two terminal carbonyl ligands, while the remaining four rhodium atoms have only one carbonyl ligand. Compound 10 contains a triangular cluster of three rhodium atoms with one terminal GePh(3) ligand, three bridging GePh(2) ligands, and one triply bridging GePh ligand. There is also one hydrido ligand that is believed to bridge one of the Rh-Ge bonds. Compound 9 reacted with PPhMe(2) at 25 degrees C to give the tetraphosphine derivative Rh(8)(CO)(8)(PPhMe(2))(4)(mu(4)-GePh)(6), 11. The structure of 11 is similar to 9 except that a PPhMe(2) ligand has replaced a carbonyl ligand on each the four Rh(CO)(2) groups. Compound 10 reacted with CO at 68 degrees C to give the complex Rh(3)(CO)(6)(mu-GePh(2))(3)(mu(3)-GePh), 12. Compound 12 is formed by the loss of the hydrido ligand and the terminal GePh(3) ligand from 10 and the addition of one carbonyl ligand. All compounds were fully characterized by IR, NMR, elemental, and single-crystal X-ray diffraction analyses.  相似文献   

5.
用X射线光电子能谱(XPS)研究了Cu(II),Eu(III)和配体6,11-二甲基-7,10-二氮杂十六-5,11-二烯-2,4,13,15-四酮(H~4daaen)形成的单核、双核隔室配合物的电子结构和成键特性;观察到配体分子中有明显的电荷转移现象;并对Cu2p~3~/~2伴峰现象进行了分析。  相似文献   

6.
WU  Ai-Zhi ZHU  Chen-Chen WANG  Tao 《结构化学》2010,29(7):1127-1131
<正>A novel dinuclear zinc(Ⅱ)complex[Zn_2L(μ-OAc)](PF_6)_2(CH_3OH)has been synthesized from a new symmetrical compartmental ligand HL in which the pendant arms,bearing pyridyl groups,are bridged by 1,3-diaminopropan-2-ol.X-ray crystal structure shows that the two zinc atoms reside within the adjacent ligand compartments and are bridged by the endogenous alkoxo-O from ligand and one exogenous carboxylate from acetate with a syn-syn mode.The coordination geometry of two zinc atoms is a distorted trigonal bipyramid with the pyridyl-N atoms and bridging alkoxo-O atom providing the equatorial donor set.Such coordination geometry observed in this complex is similar to that found in the dinuclear unit of phospholipase C.  相似文献   

7.
The title compound is a double oxygen-bridged dimeric heteronuclear metal complex. The coordination around the Cu atom is distorted square-planar involving two O and two N atoms from the bis(salicylidene)-1,3-propanediamine ligand. The Zn atom in the molecule has a distorted tetrahedral coordination sphere consisting of the two O atoms of the ligand and the two Br atoms. The bridging plane between the metal atoms is not planar.  相似文献   

8.
Divalent metal complexes of macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)) (1,8-H4te2p, H4L) were investigated in solution and in the solid state. The majority of transition-metal ions form thermodynamically very stable complexes as a consequence of high affinity for the nitrogen atoms of the ring. On the other hand, complexes with Mn2+, Pb2+ and alkaline earth ions interacting mainly with phosphonate oxygen atoms are much weaker than those of transition-metal ions and are formed only at higher pH. The same tendency is seen in the solid state. Zinc(II) ion in the octahedral trans-O,O-[Zn(H2L)] complex is fully encapsulated within the macrocycle (N4O2 coordination mode with protonated phosphonate oxygen atoms). The polymeric {[Pb(H2L)(H2O)2].6H2O}n complex has double-protonated secondary amino groups and the central atom is bound only to the phosphonate oxygen atoms. The phosphonate moieties bridge lead atoms creating a 3D-polymeric network. The [{(H2O)5Mn}2(micro-H2L)](H2L).21H2O complex contains two pentaaquamanganese(II) moieties bridged by a ligand molecule protonated on two nitrogen atoms. In the complex cation, oxygen atoms of the phosphonate groups on the opposite sites of the ring occupy one coordination site of each metal ion. The second ligand molecule is diprotonated and balances the positive charge of the complex cation. Complexation of zinc(II) and cadmium(II) by the ligand shows large differences in reactivity of differently protonated ligand species similarly to other cyclam-like complexes. Acid-assisted dissociations of metal(II) complexes occur predominantly through triprotonated species [M(H3L)]+ and take place at pH < 5 (Zn2+) and pH < 6 (Cd2+).  相似文献   

9.
An X-ray structure determination shows that the Ni(II) ion is a distorted six-coordinated octahedron by four nitrogen atoms of the tetradentate tren ligand constituting the equatorial square base, and by two nitrogen atoms of the bidentate bpy ligand in a cis position. The two six-membered rings of bpy are coplanar and almost pararell. The tetradentate ligand consists of three five-membered chelate rings in gauche coformations. The Ni-N(tren) bond lengths of this complex are almost equivalent to the reported values.  相似文献   

10.
The electronic structures of two ferromagnetic polynuclear copper(II) complexes, derived from end-to-end azido ligand and tridentate (NNN donor) Schiff base ligand, have been studied using the full-potential linearized augmented plane-wave method based on the density-functional theory. They are [Cu(L1)(micro-1,3-N3)]n(ClO4)n (1) and [Cu(L2)(micro-1,3-N3)]n(ClO4)n (2). The result shows that the spin populations in these two complexes are mainly distributed on the equatorial planes of a square pyramidal that surround the copper(II) ions. There are large and positive spin populations on copper(II) ions, small and positive spin populations on the three nitrogen atoms of tridentate Schiff base ligand, and the two terminal nitrogen atoms of asymmetrical end-to-end azido ligand, while weak and negative spin populations on the central nitrogen atoms of asymmetrical end-to-end azido ligand. Ferromagnetic coupling through the asymmetrical azido ligand in these two complexes has been mainly attributed to the spin delocalization, also with weak spin-polarization effect.  相似文献   

11.
CpMoMn(CO)5(mu-S2), 1 reacts with 1,4-benzoquinone to yield CpMoMn(CO)5(mu-S2C6H2O2), 2 containing a 1,4-quinonedithiolato ligand formed by replacing two of the hydrogen atoms on one of the C-C double bonds of 1,4-benzoquinone with sulfur atoms from the disulfido ligand in 1. Compound 2 was reduced with hydrogen to yield CpMoMn(CO)5[mu-S2C6H2(OH)2], 3 which contains a 1,4-hydroquinonedithiolato ligand. Compound 3 was reoxidized to 2 with ferrocenium hexafluorophosphate.  相似文献   

12.
A new mononuclear nickel(II) complex incorporating a Schiff-base ligand, [NiL2](DMF)4 (HL = 2′-(3,5-dibromo-2-hydroxybenzylidene)-3,5-dihydroxybenzoylhydrazide), has been synthesized and characterized by IR, UV-Vis, elemental analysis and X-ray crystal structure analysis. HL is an anionic tridentate ligand. The nickel atom is hexacoordinated with two oxygen atoms from keto group and two oxygen atoms from hydroxy group and two nitrogen atoms from amide, with the two nitrogen atoms occupying the axial positions forming a distorted octahedral coordination sphere.  相似文献   

13.
Abstract

Crystals of monoaquo(μ-5-methylpyrazine-2-carboxylato-N,O,O′), (5-methylpyrazine-2-carboxyato-N,O)di(μ-aquo-O,O)calcium(II) contain molecular ribbons in which two adjacent calcium(II) ions are bridged by two bidentate oxygen atoms donated by two ligand molecules on one side and bidentate oxygen atoms of two water molecules on the other. The coordination polyhedron around the Ca(II) ion is a pentagonal bipyramid. The vertices of its pentagonal base are composed of two bridging water oxygen atoms, two carboxylate oxygen atoms of two ligand molecules and a nitrogen atom belonging to one of the bridging ligands. A coordinated water molecule constitutes the apex of the pyramid on one side of the base, while the N, O bonding moiety of a second ligand molecule makes two apices on the other side of the base. The ribbons are held together by a system of hydrogen bonds.  相似文献   

14.
刘家禄  赵国良 《无机化学学报》2011,27(10):2021-2026
用溶液法和水热法分别合成了2个含2-苯氧基丙酸配体(HL)的聚合物{[NiL2(H2O)2(bipy)].2H2O}n(1)、{[ZnL2(bipy)].2H2O}n(2)(bipy=4,4′-联吡啶),用元素分析、红外光谱、热重和单晶X-射线衍射对产物进行了表征。在化合物1中,镍原子与2个羧基氧原子、2个配位水氧原子及2个4,4′-联吡啶的2个氮原子配位,配位数为6,镍原子的配位构型为畸变的八面体;而在化合物2中,锌原子与2个羧基氧原子及2个4,4′-联吡啶中的2个氮原子配位,锌原子的配位构型为畸变的四面体。在这2个化合物里,4,4′-联吡啶通过氮原子连接金属原子形成一维链状。链间氢键与π-π堆积作用又将一维链链接成二维层状结构。  相似文献   

15.
Reduction of the organoditantalum allene complex (eta-C5Me4R)2Ta2(mu-X)X3(mu-eta1,eta3-C3H4) (R = Me (Cp*), Et; X = Cl, Br) with sodium amalgam leads to the propynylidene complex (eta-C5Me4R)2Ta2(mu-H)2X2(mu-HCCCH) by a formal double 1,3-C-H activation of the allene ligand. The solid-state molecular structure contains a planar HCCCH ligand bridging, in parallel coordination mode, the two tantalum atoms, with the HCCCH and Ta atoms coplanar. Key structural features are a Ta-Ta distance of 2.8817(7) A, propynylidene C-C-C angle of 153.7(13) degrees , C-C distance of 1.370(8) A, Ta-C(central) distance of 2.194(9) A, and Ta-C(terminal) distance of 1.970(9) A. Molecular orbital calculations on the complex at the RHF/SBK(d) and B3LYP/LanL2dz levels of theory demonstrate that the propynylidene ligand is best viewed formally as an allenediylidene(4-) ligand bonded to two d0 tantalum atoms via two Ta=C(terminal) double bonds and an unusual three-center, two-electron bridge bond involving both tantalum atoms and a lone pair on the planar, tetracoordinate central carbon. There is no net Ta-Ta bonding based on the orbital analysis.  相似文献   

16.
In order to elucidate some basic principles for protein–ligand interactions, a subset of 87 structures of human proteins with their ligands was obtained from the PDB databank. After a short molecular dynamics simulation (to ensure structure stability), a variety of interaction energies and structural parameters were extracted. Linear regression was performed to determine which of these parameters have a potentially significant contribution to the protein–ligand interaction. The parameters exhibiting relatively high correlation coefficients were selected. Important factors seem to be the number of ligand atoms, the ratio of N, O and S atoms to total ligand atoms, the hydrophobic/polar aminoacid ratio and the ratio of cavity size to the sum of ligand plus water atoms in the cavity. An important factor also seems to be the immobile water molecules in the cavity. Nine of these parameters were used as known inputs to train a neural network in the prediction of seven other. Eight structures were left out of the training to test the quality of the predictions. After optimization of the neural network, the predictions were fairly accurate given the relatively small number of structures, especially in the prediction of the number of nitrogen and sulfur atoms of the ligand.  相似文献   

17.
The use of nonporphyrin complexes encapsulated in zeolites as catalysts for oxidation reactions has been improved in the past decades by the discovery of increasing numbers of nonheme monoxygenases. The zeolite lattice can change the oxidative chemistry of the metallocomplexes, resulting in a catalytic effect different from those observed in homogeneous reactions. We report the encapsulation of iron and copper metallocomplexes with the ligand (2-hydroxybenzyl)(2-methylpyridyl)amine, Hbpa, and iron complexes with the ligand N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl) ethylenediamine, H(2)bbpen. The zeolite-encapsulated metallocomplexes were prepared by diffusion of the ligands through the pores of the zeolites, already exchanged with the respective metal. The syntheses were performed in methanol and toluene solutions. Elemental analysis of solids with the Hbpa ligand have indicated better complexation for synthesis in toluene, where 74% of the iron atoms were coordinated by the ligand, against 37% for the synthesis in methanol. For the immobilization with the H(2)bbpen ligand in toluene it was observed that 46% of the iron atoms are coordinated, showing that the diffusion of the small ligand Hbpa through the zeolite cage was facilitated. The EPR spectra of the solids show signals at g = 2.0, which was attributed to an Fe-Fe interaction from the noncoordinated atoms, and g = 4.3 attributed to iron (III) in a rhombic geometry.  相似文献   

18.
合成了一种新型双金属杂核配合物Eu(TTA)3Zn(Salen).H2O(Salen=双水杨醛缩乙二胺,TTA=2-噻吩甲酰三氟丙酮),并对其进行了结构和荧光性能表征.配合物的晶体属于三斜晶系,Pī空间群.中心Eu(Ⅲ)离子与六个TTA分子的氧原子和Salen分子的两个酚氧原子配位,形成8配位的扭曲四方反棱柱构型.Zn(Ⅱ)离子与Salen分子中的两个酚氧原子和两个氮原子以及一个水分子配位,形成五配位的扭曲的四方锥构型.配合物Eu(TTA)3Zn(Salen).H2O的发光量子效率(18.0%)较配合物Eu(TTA)3.2H2O(12.5%)发光量子效率有明显提高,说明第二配体Zn(Salen).H2O对中心离子有较强的敏化发光作用.  相似文献   

19.
The sterically crowded isoindoline pincer ligand, 6'-MeLH, prepared by condensation of 4-methyl-2-aminopyridine and phthalonitrile, exhibits very different reaction chemistry with Cd2+, Zn2+, and Pd2+. Three different ligand coordination modes are reported, each dependent upon choice of metal ion. This isoindoline binds to Cd2+ as a charge-neutral, zwitterionic, bidentate ligand using imine and pyridine nitrogen atoms to form the eight-coordinate fluxional complex, Cd(6'-MeLH)2(NO3)2. In the presence of Zn2+, however, loss of a pyridine arm occurs through solvolysis and tetrahedrally coordinated complexes are formed with coordination of pyrrole and pyridine nitrogen atoms. Reaction with Pd2+ produces the highly distorted, square planar complex Pd(6'-MeL)Cl in which a deprotonated isoindoline anion coordinates as a tridentate pyridinium NNC pincer ligand.  相似文献   

20.
Cobalt(II), nickel(II), and copper(II) (1, 2, and 3) complexes of the dianionic form of the bis(phenolate) ligand N,N-bis(3,4-dimethyl-2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H2L) have been synthesized by electrochemical oxidation of the appropriate metal in an acetonitrile solution of the ligand. When copper is used as the anode, the addition of 1,10-phenanthroline to the electrolytic phase gave rise to a different compound [CuL]2.2CH3CN (4). The compounds [CoL]2.2CH3CN (1), [Ni2L2(H2O)].H2O (2), [CuL]2.3H2O (3), and [CuL]2.2CH3CN (4) were characterized by microanalysis, IR, electronic spectroscopy, FAB mass spectrometry, magnetic measurements and by single-crystal X-ray diffraction. The crystal structures show that the complexes have a dinuclear structure. In compounds 1, 3, and 4, two metal ions are coordinated by the two amine nitrogens and the two phenol oxygen atoms of a deprotonated pendant phenol ligand, with one phenolic oxygen atom from ligand acting as a bridge. In compounds 1 and 3, each metal center has a geometry that is closest to trigonal bipyramidal. Magnetic susceptibility data for both compounds show an antiferromagnetic coupling with 2J = -15 cm(-1) for the cobalt(II) complex and a strong antiferromagnetic coupling with 2J = -654 cm(-1) for the copper(II) complex. However, in 4 the geometry around the metal is closer to square pyramidal and the compound shows a lower antiferromagnetic coupling (2J = -90 cm(-1)) than in 3. The nickel atoms in the dimeric compound 2 are hexacoordinate. The NiN2O4 chromophore has a highly distorted octahedral geometry. In this structure, a dianionic ligand binds to one nickel through the two amine nitrogen atoms and the two oxygen atoms and to an adjacent nickel via one of these oxygen atoms. The nickel atoms are linked through a triple oxygen bridge involving two phenolic oxygens, each from a different ligand, and an oxygen atom from a water molecule. The two nickel ions in 2 are ferromagnetically coupled with 2J = 19.8 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号