首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reverse cation-exchange approach for the synthesis of hollow PbSe nanospheres is successfully established. This route involves a new strategy of a stepwise, in-situ template-based evolution from spherical amorphous Se colloids to Se/Ag(2)Se core/shell colloids, then to hollow PbSe nanospheres. Se colloids are prepared as the initial product by utilizing the chelation of ethylenediamine to bulk Se. They are converted into Se/Ag(2)Se core/shell colloids through the reaction with Ag(+) in ethylene glycol. During the conversion from Ag(2)Se shell to PbSe shell, a small amount of tributylphosphine is crucial as the capping agent. The characterization results, including XRD, SEM, TEM, HRTEM, and EDX, reveal that hollow PbSe nanospheres with polycrystalline and cubic structure are prepared. The corresponding optical band gap is calculated to be 0.56 eV. This conformation is potentially beneficial to the improvement concerning the applications of PbSe nanostructures.  相似文献   

2.
Described herein is a novel one‐pot aqueous synthesis of ZnSe nanocrystals has featuring the utilization of Na2SeO3 and Zn(AC)2×2H2O as Se and Zn source, glutathione (GSH) as stabilizing agent and reducing agent. By this approach, the UV‐blue ZnSe QDs with quantum yield (QYs) up to 19% have been synthesized with a molar ratio of Se/Zn/GSH at 1:4:8.5 under aqueous conditions at 110 °C. XRD and TEM show the ZnSe QDs are zinc cubic structure particles with an average diameter of 3–5 nm.  相似文献   

3.
Here we report a new "green" method to synthesize Zn(1-x)Cd(x)Se (x = 0-1) and stable red-green-blue tricolor Zn(1-x)Cd(x)Se core/shell nanocrystals using only low cost, phosphine-free and environmentally friendly reagents. The first excitonic absorption peak and photoluminescence (PL) position of the Zn(1-x)Cd(x)Se nanocrystals (the value of x is in the range 0.005-0.2) can be fixed to any position in the range 456-540 nm. There is no red or blue shift in the entire reaction process. Three similar sizes of alloyed Zn(1-x)Cd(x)Se nanocrystals with blue, green, and yellow emissions were successfully selected as cores to synthesize high quality blue, green, and red core/shell nanocrystal emitters. For the synthesis of core/shell nanocrystals with a high quantum yield (QY) and stability, the selection of shell materials has been proven to be very important. Therefore, alternative protocols have been used to optimize thick shell growth. ZnSe/ZnSe(x)S(1-x) and CdS/Zn(1-x)Cd(x)S have been found as an excellent middle multishell to overcoat between the alloyed Zn(1-x)Cd(x)Se core and ZnS outshell. The QYs of the as-synthesized core/shell alloyed Zn(1-x)Cd(x)Se nanocrystals can reach 40-75%. The Cd content is reduced to less than 0.1% for Zn(1 -x)Cd(x)Se core/shell nanocrystals with emissions in the range 456-540 nm. More than 15 g of high quality Zn(1-x)Cd(x)Se core/shell nanocrystals were prepared successfully in a large scale, one-pot reaction. Importantly, the emissions of such thick multishell nanocrystals are not susceptible to ligand loss and stability in various physiological conditions.  相似文献   

4.
Electronic absorption spectroscopy has been used to study changes in Co2+ ligand-field parameters as a function of alloy composition in Co2+-doped Cd(1-x)Zn(x)Se nanocrystals. A shift in the energy of the 4T1(P) excited-state with alloy composition is observed. Analysis reveals that Co2+-Se2- bond lengths change relatively little as the host is varied continuously from CdSe to ZnSe, generating a large difference between microscopic and average cation-anion bond lengths in Co2+-doped CdSe nanocrystals but not in Co2+-doped ZnSe nanocrystals. The bimodal bond-length distributions observed here are shown to cause a diameter-dependent enthalpic destabilization of doped semiconductor nanocrystals.  相似文献   

5.
一种提高SiO2凝胶玻璃中ZnSe纳米晶稳定性的方法   总被引:3,自引:0,他引:3  
半导体纳米品材料具有很大的应用潜力,然而非氧化物半导体纳米晶在空气中通常不稳定.因此其应用受到限制.纳米品不稳定主要是因为其表面原子配位不足,存在大量的悬空键,d使其很容易与环境中的物质发生反应而逐渐变质.人们通常采用惰性介质包覆的方法来提高纳米晶的稳定性,  相似文献   

6.
以溶于十八烯的Se作为Se前驱体,在无膦条件下制备得到了具有较高量子产率的Mn:ZnSe纳米晶.为了进一步提高纳米晶的稳定性和发光强度,运用外延生长的方法进行ZnS壳层包覆并得到了具有核-壳结构的Mn:ZnSe/ZnS纳米晶.X射线衍射、透射电子显微镜及吸收和荧光光谱测试结果表明,该方法合成的Mn:ZnSe纳米晶以及核-壳结构Mn:ZnSe/ZnS纳米晶均为闪锌矿结构,具有良好的单分散性,包覆ZnS外壳层后量子产率可达到60%以上.此外,对ZnS壳层厚度和Mn2+的掺杂量对Mn:ZnSe/ZnS纳米晶发光强度的影响及发光机制也进行了初步讨论.  相似文献   

7.
Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.  相似文献   

8.
Here we report a low-cost and "green" phosphine-free route for the size- and shape-controlled synthesis of high-quality zinc blende (cubic) ZnSe nanocrystals. To avoid the use of expensive and toxic solvents such as trioctylphosphine (TOP) or tributylphosphine (TBP), SeO(2) was dispersed in 1-octadecene (ODE) as a chalcogen precursor. It has been found that the temperature and the surface ligand influenced the nucleation, the reaction speed and the formation of different shapes. Absorption spectroscopy, fluorescence spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for the characterization of the as-synthesized ZnSe nanocrystals. The size-dependent photoluminescence (PL) range of the as-prepared ZnSe nanocrystals was between 390 and 450 nm, with the PL full width at half-maximum (FWHM) well controlled between 14 and 18 nm and PL quantum yields reached up to 40% at room temperature. Moreover, this new selenium precursor can be used to form tetrapod-shaped ZnSe nanocrystals when zinc acetylacetonate was introduced as the zinc precursor with a one-pot method.  相似文献   

9.
A general, one-pot, single-step method for producing colloidal silver chalcogenide (Ag(2)E; E = Se, S, Te) nanocrystals is presented, with an emphasis on Ag(2)Se. The method avoids exotic chemicals, high temperatures, and high pressures and requires only a few minutes of reaction time. While Ag(2)S and Ag(2)Te are formed in their low-temperature monoclinic phases, Ag(2)Se is obtained in a metastable tetragonal phase not observed in the bulk.  相似文献   

10.
With thiourea (Tu) as sulfur source and the assistance of CTAB, faceted and cubic Ag2S nanocrystals have been synthesized successfully via a simple hydrothermal route by modulating the ratio of Tu and AgNO3, respectively. It is the first report that the fabrication of faceted and cubic Ag2S nanocrystals takes place in aqueous medium, which makes the synthesis environmentally benign, user-friendly, economical and practicable to industry production. It is also found that the cooperation effect of CTAB and Tu should be responsible for the formation of the as-obtained Ag2S nanocrystals. The UV-vis absorption spectrum of the products shows obvious blue shift.  相似文献   

11.
The effects of cation solvation and the volume change (Delta V) of reaction on the equilibrium and the morphology change in the cation-exchange reactions of metal chalcogenide nanocrystals, CdE --> M(x)E(y) (E = S, Se, Te; M = Pd, Pt), were investigated. Since the solvation of cations is an important controllable factor determining the free energy of the reaction, the effect of varying cation solvation conditions on the equilibrium of the reaction was examined. A two-phase solvent environment, where the cations involved in the exchange reaction were preferentially solvated in different phases by using selective cation complexing molecules, was particularly efficient in increasing the thermodynamic driving force. The effect of Delta V of reaction on the morphology of the product nanocrystals was also investigated. Depending on the stress developed in the lattice during the reaction, product nanocrystals underwent varying degrees of morphological changes such as void formation and fragmentation in addition to the preservation of the original morphology of the reactant nanocrystals. The knowledge of the effect of ion solvation and Delta V of reaction on the equilibrium and product morphology provides a new strategy and useful guides to the application of cation-exchange reactions for the synthesis of a broader range of inorganic nanocrystals.  相似文献   

12.
IntroductionSemiconductor nanocrystals show strong size-de-pendent properties when their size is similar to or smal-ler than the excition Bohr radius of the bulk materialsand quantum confinement occurs for the space-con-fined motion of the electrons and holes in the nano-re-gion of materials[1—5].Because of the excellent opticaland electronic properties,semiconductor nanocrystalsare currently being investigated as emitting materials forthin-film light-emitting devices(LED)[6,7],low-thresh-ol…  相似文献   

13.
Li S  Zhao Z  Liu Q  Huang L  Wang G  Pan D  Zhang H  He X 《Inorganic chemistry》2011,50(23):11958-11964
Metastable zinc blende CuInSe(2) nanocrystals were synthesized by a hot-injection approach. It was found that the lattice mismatches between zinc blende CuInSe(2) and ZnSe as well as CuInSe(2) and CuInS(2) are only 2.0% and 4.6%, respectively. Thus, alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a zinc blende structure have been successfully synthesized over the entire composition range, and the band gaps of alloys can be tuned in the range from 2.82 to 0.96 eV and 1.43 to 0.98 eV, respectively. These alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a broad tunable band gap have a high potential for photovoltaic and photocatalytic applications.  相似文献   

14.
ZnSe nanoparticles were prepared from ZnCl2, Se and KBH4 in the presence of cetyltrimethyl ammonium bromide (CTAB) through a room temperature solid phase process. The products were characterized with x‐ray diffraction (XRD), transmission electron microscope (TEM), and energy dispersive analysis of x‐ray (EDAX). The results show that the cubic zincblende phase ZnSe nanoparticles can be obtained using this simple method. The size of nanoparticles was evaluated to be from 8 to 30 nm.  相似文献   

15.
以Ag纳米线为模板,通过两步水浴法合成了Ag/ZnO/ZnSe三元异质结光催化材料。利用场发射扫描电子显微镜(FESEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)以及透射电子显微镜(FETEM)对样品的形貌和结构进行了表征。结果显示,Ag/ZnO/ZnSe三元异质结为蠕虫状的Ag/ZnO二元异质结外镶嵌着ZnSe小颗粒。在可见光下,对比纯Ag纳米线、纯ZnO纳米球、Ag/ZnO异质结对罗丹明B的可见光降解效率,结果发现Ag/ZnO/ZnSe异质结表现出了更高的光催化效率。其光催化性能的提高主要是由于Ag/ZnO/ZnSe异质结的作用促使电子空穴对的分离,降低了电子空穴对的复合机率,从而提高了材料的光催化效率。  相似文献   

16.
以Ag纳米线为模板,通过两步水浴法合成了Ag/Zn O/Zn Se三元异质结光催化材料。利用场发射扫描电子显微镜(FESEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)以及透射电子显微镜(FETEM)对样品的形貌和结构进行了表征。结果显示,Ag/Zn O/Zn Se三元异质结为蠕虫状的Ag/Zn O二元异质结外镶嵌着Zn Se小颗粒。在可见光下,对比纯Ag纳米线、纯Zn O纳米球、Ag/Zn O异质结对罗丹明B的可见光降解效率,结果发现Ag/Zn O/Zn Se异质结表现出了更高的光催化效率。其光催化性能的提高主要是由于Ag/Zn O/Zn Se异质结的作用促使电子空穴对的分离,降低了电子空穴对的复合机率,从而提高了材料的光催化效率。  相似文献   

17.
在有机相体系中利用ZnSe前驱体纳米晶制备过程中的富Se环境,以引入Cd2+的方式在相对温和的环境下通过控制Cd2+离子的加入量及调节反应时间,成功制备了ZnSe/CdSe核-壳复合结构纳米晶.利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见吸收光谱(UV-vis)和荧光光谱(FL)对其结构形貌以及光学性质进行表征和分析的结果表明,CdSe以外延生长的方式包覆在ZnSe纳米晶表面从而形成具有良好结晶性的核-壳复合结构,其荧光发射始终保持良好单色性,同时实现了在500~620nm可见光范围内的连续可调.  相似文献   

18.
Metallic Ag nanoparticles have been converted to Ag2Se nanoparticles at ambient temperature and open atmosphere by UV photodissociation of adsorbed CSe2 on the Ag core surface. The photolysis could be prevented at any stage yielding Ag@Ag2Se core-shell structures of different thickness. Depending on the initial Ag nanoparticle size, either hollow or filled nanocrystals of Ag2Se could be prepared. The Kirkendall effect has been proposed to account for the formation of hollow nanoparticles. A coated-sphere Drude model has been used to explain the redshift of the Ag plasmon band as a function of the Ag2Se shell thickness as well as to provide the first estimates of the wavelength-dependent dielectric function of Ag2Se. This photochemical method might be especially promising for carrying out a direct room-temperature phototransformation of metallic into semiconductor nanostructures already assembled on surface templates.  相似文献   

19.
A convenient chemical conversion method that allows the direct preparation of nanocrystalline ZnE (E = O, S, Se) semiconductor spheres and hollow spheres as well as their core/shell structures is reported. By using monodisperse ZnO nanospheres as a starting reactant and in situ template, ZnS, ZnSe solid and hollow nanospheres, and ZnO/ZnS and ZnO/ZnSe core/shell nanostructures have been obtained through an ultrasound-assisted solution-phase conversion process. The formation mechanism of these nanocrystals is connected with the sonochemical effect of ultrasound irradiation. The photoluminescence and electrogenerated chemiluminescence properties of the as-prepared nanocrystals were investigated.  相似文献   

20.
Facile synthesis of photoluminescent ZnS and ZnSe nanopowders   总被引:1,自引:0,他引:1  
The solid state thermal, one pot, efficient chemical reaction between Zn and S or Se elements in a closed reactor at 650 degrees C/60 min under their autogenic pressure in an inert atmosphere yielded luminescent ZnS and ZnSe semiconducting nanopowders (NPs). Scanning and Transmission electron microscopy measurements confirmed the size and shape of the as formed ZnS and ZnSe NPs. The wide size distributions of ZnS and ZnSe NPs are confirmed by UV-vis and TEM measurements. The crystalline wurtzite phase of ZnS and face centered cubic phase of ZnSe NPs is revealed from XRD and HR-TEM measurements. The obtained Raman scattering bands also supports the formation of pure ZnS and ZnSe phases. At room temperature, a strong visible green emission centered at approximately 525 nm is measured for ZnS, while ZnSe NPs showed a broad red emission band extending from 550 to 760 nm. The putative reaction mechanism is based on the low melting and boiling points of reactants (Zn, S and Se) under their autogenic pressure in an inert atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号