首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We develop the axisymmetric Synthetic Schlieren technique to study the wake of a microscale sphere settling through a density stratification. A video-microscope was used to magnify and image apparent displacements of a micron-sized random-dot pattern. Due to the nature of the wake, density gradient perturbations in the horizontal greatly exceed those in the vertical, requiring modification of previously developed axisymmetric techniques. We present results for 780 and 383 μm spheres, and describe the limiting role of noise in the system for a 157 μm sphere. This technique can be instrumental in understanding a range of ecological and environmental oceanic processes on the microscale.
King-Yeung Yick (Corresponding author)Email:
Roman StockerEmail:
Thomas PeacockEmail:
  相似文献   

2.
Two- and three-dimensional flows in nearly cuboidal cavities are investigated experimentally. A tight cavity is formed in the gap between two long and parallel cylinders of large radii by adding rigid top, bottom, and end walls. The cross-section perpendicular to the axes of the cylinders is nearly rectangular with aspect ratio Γ. The axial aspect ratio Λ > 10 is large to suppress end-wall effects. The fluid motion is driven by independent and steady rotation of the cylinders about their axes which defines two Reynolds numbers Re 1,2. Stability boundaries of the nearly two-dimensional steady flow have been determined as functions of Re 1,2 for Γ = 0.76 and Γ = 1. Up to six different three-dimensional supercritical modes have been identified. The critical thresholds for the onset of most of the three-dimensional modes, three of which have been observed for the first time, agree well with corresponding linear-stability calculations. Particular attention is paid to the flow for Γ = 1 under symmetric and parallel wall motion. In that case the basic flow consists of two mirror symmetric counter-rotating parallel vortices. They become modulated in span-wise direction as the driving increases. Detailed LDV measurements of the supercritical three-dimensional velocity field and the bifurcation show an excellent agreement with numerical simulations.
Tanja Siegmann-Hegerfeld (Corresponding author)Email:
Stefan AlbensoederEmail:
Hendrik C. KuhlmannEmail:
  相似文献   

3.
This paper reports laser-Doppler measurements of the mean flow and turbulence stresses in a swirling pipe flow. Experiments were carried out under well-controlled laboratory conditions in a refractive index-matched pipe flow facility. The results show pronounced asymmetry in mean and fluctuating quantities during the downstream decay of the swirl. Experimental data reveal that the swirl significantly modifies the anisotropy of turbulence and that it can induce explosive growth of the turbulent kinetic energy during its decay. Anisotropy invariant mapping of the turbulent stresses shows that the additional flow deformation imposed by initially strong swirling motion forces turbulence in the core region to tend towards the isotropic two-component state. When turbulence reaches this limiting state it induces rapid production of turbulent kinetic energy during the swirl decay.
J. Jovanović (Corresponding author)Email:
F. DurstEmail:
  相似文献   

4.
An iterative procedure, based on the proper orthogonal decomposition (POD), first proposed by Everson and Sirovich (J Opt Soc Am A 12(8):1657–1664, 1995) is applied to marred particle image velocimetry (PIV) data of shallow rectangular cavity flow at Mach 0.19, 0.28, 0.38, and 0.55. The procedure estimates the POD modes while simultaneously estimating the missing vectors in the PIV data. The results demonstrate that the absolute difference between the repaired vectors and the original PIV data approaches the experimental uncertainty as the number of included POD modes is increased. The estimation of the dominant POD modes is also shown to converge by examining the subspace spanned by the POD eigenfunctions.
Nathan E. Murray (Corresponding author)Email:
Lawrence S. UkeileyEmail:
  相似文献   

5.
Variational optical flow estimation for particle image velocimetry   总被引:1,自引:1,他引:1  
We introduce a novel class of algorithms for evaluating PIV image pairs. The mathematical basis is a continuous variational formulation for globally estimating the optical flow vector fields over the whole image. This class of approaches has been known in the field of image processing and computer vision for more than two decades but apparently has not been applied to PIV image pairs so far. We pay particular attention to a multi-scale representation of the image data so as to cope with the quite specific signal structure of particle image pairs. The experimental evaluation shows that a prototypical variational approach competes in noisy real-world scenarios with three alternative approaches especially designed for PIV-sequence evaluation. We outline the potential of the variational method for further developments.The publications of the CVGPR Group are listed under .
P. RuhnauEmail:
H. NobachEmail:
  相似文献   

6.
7.
Recent experimental techniques used to investigate shear banding are reviewed. After recalling the rheological signature of shear-banded flows, we summarize the various tools for measuring locally the microstructure and the velocity field under shear. Local velocity measurements using dynamic light scattering and ultrasound are emphasized. A few results are extracted from current works to illustrate open questions and directions for future research.
Sébastien MannevilleEmail:
  相似文献   

8.
Comment on the Clauser chart method for determining the friction velocity   总被引:1,自引:0,他引:1  
A known difficulty with using the Clauser chart method to determine the friction velocity in wall bounded flows is that it assumes, a priori, a logarithmic law for the mean velocity profile. Using both experimental and DNS data in the literature, this note explicitly shows how friction velocities obtained using the Clauser chart method can potentially mask subtle Reynolds-number-dependent behavior.
Tie WeiEmail:
  相似文献   

9.
The understanding of the physics of flapping flight has long been limited due to the obvious experimental difficulties in studying the flow field around real insects. In this study the time-dependent three-dimensional velocity field around a flapping wing was measured quantitatively for the first time. This was done using a dynamically-scaled wing moving in mineral oil in a pattern based on the kinematics obtained from real insects. The periodic flow is very reproducible, due to the relatively low Reynolds number and precise control of the wing. This repeatability was used to reconstruct the full evolving flow field around the wing from separate stereoscopic particle image velocimetry measurements for a number of spanwise planes and time steps. Typical results for two cases (an impulsive start and a simplified flapping pattern) are reported. Visualizations of the obtained data confirm the general picture of the leading-edge vortex that has been reported in recent publications, but allow a refinement of the detailed structure: rather than a single strand of vorticity, we find a stable pair of counter-rotating structures. We show that the data can also be used for quantitative studies, such as lift and drag prediction.
C. Poelma (Corresponding author)Email: Phone: +31-15-2782620
W. B. DicksonPhone: +1-626-3955775
  相似文献   

10.
The most important rheological and mathematical features of the pom–pom model are presently used to compare and improve other constitutive models such as the Giesekus and Phan-Thien–Tanner models. A pragmatic methodology is selected that allows derivation of simple constitutive equations, which are suited to possible software implementation. Alterations to the double convected pom–pom, Phan-Thien–Tanner and Giesekus models are proposed and assessed in rheometric flows by comparing model predictions to experimental data.
Benoit Debbaut (Corresponding author)Email:
  相似文献   

11.
To develop a tool for predicting of heat and mass transfer in Joule–Thomson cryocoolers working at subcritical pressures, we study a counter flow heat exchanger with condensation by employing the integral method. The effects of inlet pressure and working fluid are predicted. We also show that there is an optimal value of the enthalpy difference along the heat exchanger for which its length is minimal.
M. ShusserEmail:
  相似文献   

12.
The spatial resolution of PIV can be increased significantly by using an image deformation method (IDM) and very small grid distance (i.e. the final distance between vectors), therefore, also increasing the processing time. By using an interpolation scheme with a good spectral response, in the dense predictor step of the algorithm, it is possible to increase the grid distance without decreasing the spatial resolution therefore decreasing the total processing time.
T. AstaritaEmail:
  相似文献   

13.
Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is determined with ca. 10% precision using average images over 6,000 laser pulses, down to 0.5 mm from the surface of the wedge. Direct interpretations of Raman intensities provide more precise density data than indirect interpretations based on shock geometry in 2D inviscid flow.
N. J. DamEmail:
  相似文献   

14.
This paper presents a theoretical model and corresponding experimental results of the oblique-incidence response of a luminescent photoelastic coating (LPC). LPCs use a luminescent dye that both partially preserves the stress-modified polarization state and provides high emission signal strength at oblique surface orientations. These characteristics enable the technique to acquire full-field strain separated measurements and principal strain directions, potentially on complex three-dimensional geometries, without the use of supplemental experimental or analytical techniques. Results of a single-layer LPC on a disk in diametral compression are presented to assess a theoretical model and evaluate the measurement sensitivity.
J. P. HubnerEmail:
  相似文献   

15.
The present paper reports a thorough comparison of the turbulent flow characteristics exhibited by a cubic surface-mounted obstacle and a simple geometric variant (gable roof of 30° roof pitch). The measurements supporting this study were obtained by the use of a 2D-DPIV system. Significant differences in the large-scale vortical structures and turbulent kinetic energy fields implied drastic consequences with respect to the advective and turbulent dispersive characteristics of the flow at roof and ground levels.
J. M. M. SousaEmail: Phone: +351-21-8417320Fax: +351-21-8495241
  相似文献   

16.
An investigation of the flow over a three-dimensional (3-D) double backward-facing step is presented using a combination of both quantitative measurements from a particle image velocimetry (PIV) system and qualitative oil-flow visualizations. The arrangement of the PIV instrument allows for snap-shots of the (x, y) and (y, z) planes at various axial and spanwise positions. The measurements illustrate characteristics that are found in both two-dimensional (2-D) backward-facing steps and 3-D flows around wall mounted cubes. In particular, the development of a horseshoe vortex is found after each step alongside other vortical motions introduced by the geometry of the model. Large turbulence levels are found to be confined to a region in the center of the backstep; their mean square levels being much larger than what has been observed in 2-D backward-facing steps. The large turbulent fluctuations are attributed to a quasi-periodic shedding of the horseshoe vortex as it continuously draws energy from the spiral nodes of separation, which form to create the base of the horseshoe vortex. A combination of effects including the shedding of the first horseshoe vortex, the horizontal entrainment of air and the presence of two counter rotating vortices initiated at reattachment, are shown to cause the steering vector of the flow to jettison away from the surface in the first redeveloping region and along the center at z/h = 0. Oil-flow visualizations confirm these observations.
C. E. Tinney (Corresponding author)Email:
L. S. UkeileyEmail:
  相似文献   

17.
The effect of independent variations of the intensity of individual tracer particles between consecutive images on the accuracy of common displacement estimation methods in particle image velocimetry (PIV) is investigated. Such variations can be observed, e.g., in flows with components perpendicular to the illumination sheet, leading to out-of-plane displacements of the tracer particles. The achievable accuracy of PIV measurements is shown to be limited by this effect alone to be of the order of 0.1 pixel, yielding a basic limitation of the PIV technique.
Holger NobachEmail:
  相似文献   

18.
The generation and quantitative visualization of breaking internal waves   总被引:1,自引:0,他引:1  
New techniques for the generation and quantitative visualization of breaking progressive internal waves are presented. Laboratory techniques applicable to general stratified flow experiments are also demonstrated. The planar laser-induced fluorescence (PLIF) technique is used to produce calibrated images of the wave breaking process, and the details of the PLIF measurements are described in terms of the necessary corrections and considerations for the application of PLIF to stratified flows. Results of the flow visualization and wave generation techniques are presented, which show that the nature of internal wave breaking is strongly dependent on the type of breaking internal wave considered.
C. D. TroyEmail:
  相似文献   

19.
An overview is given of prediction methods for motion and deformation of a bubble that is created by boiling at a wall, at times before and after detachment, with a focus on added mass forces in the vicinity of the wall. The possibility to apply added mass coefficients derived in potential flows also to flows with vorticity is examined. An introduction to Lagrangian methods is given. Added mass tensors are derived for deforming bubbles at and away from a plane wall. Expressions for induced hydrodynamic lift forces are given, and validation experiments are briefly discussed.
C. W. M. van der GeldEmail:
  相似文献   

20.
Heat shielding has become an increasingly necessary means for protecting temperature-sensitive components from direct exposure to thermal radiation from high temperature sources. A simple but comprehensive distributed parameter integral model has been developed for predicting the temperature distribution of the shield and the protected component for a variety of heat shield systems. The integral model presented here is seen to be more accurate than lumped models, and can be computed with much greater speed than that required for numerical models.
C. J. KobusEmail: Phone: +1-248-3702489Fax: +1-248-3704416
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号