首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

2.
Infrared reflection absorption spectroscopy that used buried metal layer substrates (BML-IRRAS) and density functional cluster calculations were employed to investigate the water related oxidation reactions of 2H + H2O/Si(1 0 0)-(2 × 1), 2D + H2O/Si(1 0 0)-(2 × 1), and H2O + H/Si(1 0 0)-(2 × 1). In addition to the oxygen inserted coupled monohydrides, which were previously reported in the former reaction system, we report several other oxidized Si hydride species in our BML-IRRAS experiments. Three new pairs of vibrational bands are identified between 900 and 1000 cm−1. These vibrational frequencies were calculated using Si9 and Si10 cluster models that included all possible structures from zero to five oxygen insertions into the top layer silicon atoms using a B3LYP gradient corrected density functional method with a polarized 6-31G** basis set for all atoms. The three pairs of vibrational modes are assigned to the scissoring modes of adjacent and isolated SiH2 with zero, one, and two oxygen atoms inserted into the Si back bonds. All the other newly observed vibrational peaks related to Si oxidation are also assigned in this study. The Si-O stretching bands observed in the reaction 2D + H2O/Si(1 0 0)-(2 × 1) show an isotope effect, which suggests that in the system 2H + H2O/Si(1 0 0)-(2 × 1) also, hydrogen atom tunneling plays an important role for the insertion of oxygen atoms into Si back bonds that form oxidized adjacent dihydrides.  相似文献   

3.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

4.
The desorption kinetics of hydrogen from polished 6H-SiC(0 0 0 1) surfaces exposed to various sources of hydrogen have been determined using temperature programmed desorption (TPD). For (3 × 3) 6H-SiC(0 0 0 1) surfaces prepared via annealing and cooling in SiH4, desorption of 0.2 ± 0.05 monolayer of molecular hydrogen was observed to occur at ≈590 °C. This β1 H2 desorption peak exhibited second order kinetics with an activation energy of 2.4 ± 0.2 eV. For (3 × 3) 6H-SiC surfaces exposed to atomic hydrogen generated via either a hot rhenium filament or remote hydrogen plasma, low energy electron diffraction patterns showed an eventual conversion back to (1 × 1) symmetry. Spectra acquired using Auger electron and X-ray photoelectron spectroscopies revealed that the atomic hydrogen exposure removed the excess Si. Photoelectron spectroscopy results also showed a 0.5 eV increase in binding energy for the Si2p and C1s core levels after removal of the Si-Si bilayer that is indicative of a decrease in band bending at the SiC surface. TPD from the (3 × 3) 6H-SiC(0 0 0 1) surfaces exposed to atomic hydrogen showed substantially more molecular hydrogen desorption (1-2 ML) through the appearance of a new desorption peak (β2,3) that started at ≈200 °C. The β2,3 peak exhibited second order desorption kinetics and a much lower activation energy of 0.6 ± 0.2 eV. A third smaller hydrogen desorption state was also detected in the 650-850 °C range. This last feature could be resolved into two separate desorption peaks (α1 and α2) both of which exhibited second order kinetics with activation energies of 4.15 ± 0.15 and 4.3 ± 0.15 eV, respectively. Based on comparisons to hydrogen desorption from Si and diamond surfaces, the β and α desorption peaks were assigned to hydrogen desorption from Si and C sites, respectively.  相似文献   

5.
The initial stages of iron silicide growth on the Si(1 0 0)2 × 1 surface during solid-phase synthesis were investigated by photoelectron spectroscopy using synchrotron radiation. The experiments were made on iron films of 1-50 monolayer (ML) thickness in the temperature range from room temperature to 750 °С. Our results support the existence of three stages in the Fe deposition on Si(1 0 0) at room temperature, which include formation of the Fe-Si solid solution, Fe3Si silicide and an iron film. The critical Fe dose necessary for the solid solution to be transformed to the silicide is found to be 5 ML. The solid-phase reaction was found to depend on the deposited metal dose. At 5 ML, the reaction begins at 60 °С, and the solid-phase synthesis leads to the formation of only metastable silicides (FeSi with the CsCl-type structure, γ-FeSi2 and α-FeSi2). A specific feature of this process is Si segregation on the silicide films. At a thickness of 15 ML and more, we observed only stable phases, namely, Fe3Si, ε-FeSi and β-FeSi2.  相似文献   

6.
From ab initio studies employing the pseudopotential method and the density functional scheme, we report on progressive changes in geometry, electronic states, and atomic orbitals on Si(0 0 1) by adsorption of different amounts of Bi coverage. For the 1/4 ML coverage, uncovered Si dimers retain the characteristic asymmetric (tilted) geometry of the clean Si(0 0 1) surface and the Si dimers underneath the Bi dimer have become symmetric (untilted) and elongated. For this geometry, occupied as well as unoccupied surface states are found to lie in the silicon band gap, both sets originating mainly from the uncovered and tilted silicon dimers. For the 1/2 ML coverage, there are still both occupied and unoccupied surface states in the band gap. The highest occupied state originates from an elaborate mixture of the pz orbital at the Si and Bi dimer atoms, and the lowest unoccupied state has a ppσ* antibonding character derived from the Bi dimer atoms. For 1 ML coverage, there are no surface states in the fundamental bulk band gap. The highest occupied and the lowest unoccupied states, lying close to band edges, show a linear combination of the pz orbitals and ppσ* antibonding orbital characters, respectively, derived from the Bi dimer atoms.  相似文献   

7.
Surface phase diagrams of GaN(0 0 0 1)-(2 × 2) and pseudo-(1 × 1) surfaces are systematically investigated by using our ab initio-based approach. The phase diagrams are obtained as functions of temperature T and Ga beam equivalent pressure pGa by comparing chemical potentials of Ga atom in the vapor phase with that on the surface. The calculated results imply that the (2 × 2) surface is stable in the temperature range of 700-1000 K at 10−8 Torr and 900-1400 K at 10−2 Torr. This is consistent with experimental stable temperature range for the (2 × 2). On the other hand, the pseudo-(1 × 1) phase is stable in the temperature range less than 700 K at 10−8 Torr and less than 1000 K at 10−2 Torr. Furthermore, the stable region of the pseudo-(1 × 1) phase almost coincides with that of the (2 × 2) with excess Ga adatom. This suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1 × 1) to the (2 × 2) with Ga adatom and vice versa.  相似文献   

8.
This study investigates ultra-thin potassium chloride (KCl) films on the Si(1 0 0)-2 × 1 surfaces at near room temperature. The atomic structure and growth mode of this ionic solid film on the covalent bonded semiconductor surface is examined by synchrotron radiation core level photoemission, scanning tunneling microscopy and ab initio calculations. The Si 2p, K 3p and Cl 2p core level spectra together indicate that adsorbed KCl molecules at submonolayer coverage partially dissociate and that KCl overlayers above one monolayer (ML) have similar features in the valance band density of states as those of the bulk KCl crystal. STM results reveal a novel c(4 × 4) structure at 1 ML coverage. Ab initio calculations show that a model that comprises a periodic pyramidal geometry is consistent with experimental results.  相似文献   

9.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

10.
Injection of tunneling electrons and holes from the probe tips of a scanning tunneling microscope was found to enhance the hopping motion of Cl atoms between neighboring dangling-bond sites of Si dimers on Si(1 0 0)-(2 × 1) surfaces, featured by the rate of hopping linearly dependent on the injection current. The hopping rate formed peaks at sample biases of VS∼+1.25 and −0.85 V, which agree with the peaks in the local density of states spectrum measured by scanning tunneling spectroscopy. The Cl hopping was enhanced at Cl-adsorbed sites even remote from the injection point. The Cl hopping by hole injection was more efficiently enhanced by sweeping the tip along the Si dimer row than by tip-sweeping along the perpendicular direction. Such anisotropy, on the other hand, was insignificant in the electron injection case. All of these findings can be interpreted by the model that the holes injected primarily into a surface band originated from the dangling bonds of Si dimers propagate quite anisotropically along the surface, and become localized at Cl sites somehow to destabilize the Si-Cl bonds causing hopping of the Cl atoms. The electrons injected into a bulk band propagate in an isotropic manner and then get resonantly trapped at Si-Cl antibonding orbitals, resulting in bond destabilization and hopping of the Cl atoms.  相似文献   

11.
The atomic structure of Cs atoms adsorbed on the Si(0 0 1)(2 × 1) surface has been investigated by coaxial impact collision ion scattering spectroscopy. When 0.5 ML of Cs atoms are adsorbed on Si(0 0 1) at room temperature, it is found that Cs atoms occupy a single absorption site on T3 with a height of 3.18 ± 0.05 Å from the second layer of Si(0 0 1)(2 × 1) surface, and the bond length between Cs and the nearest Si atoms is 3.71 ± 0.05 Å.  相似文献   

12.
The adsorption of S2 on the Si(1 1 1)-(7 × 7) surface and the interaction of copper and sulfur on this sulfur-terminated Si(1 1 1) surface have been studied using synchrotron irradiation photoemission spectroscopy and scanning tunneling microscopy. The adsorption of S2 at room temperature results in the passivation of silicon dangling bonds of Si(1 1 1)-(7 × 7) surface. Excessive sulfur forms Sn species on the surface. Copper atoms deposited at room temperature directly interact with S-adatoms through the formations of Cu-S bonds. Upon annealing the sample at 300 °C, CuSx nanocrystals were produced on the sulfur-terminated Si(1 1 1) surface.  相似文献   

13.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

14.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

15.
We present the results of scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) of the Ta/Si(1 1 1)-7 × 7 system after deposition of Ta at substrate temperatures from 300 to 1250 K. The coverage of Ta varied from 0.05 up to 2.5 of a monolayer (ML). STM shows that at 300 K and coverage less than 1 ML, a disordered chemisorbed phase is formed. Deposition on a hot surface (above 500 K) produces round 3D clusters randomly distributed on the surface. Cluster height and their diameter are found to change drastically with annealing temperature and the Ta coverage. Analysis of photoemission data of the Si 2p core levels shows that at room temperature and at coverage ?1 ML core level binding energy shifts and intensity variations of Si surface related components are observed, which clearly indicate that the reaction starts already at 300 K. Shifts in the binding energy, changes of the peak shapes and intensity of the Ta 4f doublet at higher temperatures can be explained by the formation of stable silicide on the surface.  相似文献   

16.
T.H. Andersen 《Surface science》2009,603(1):84-14495
Adsorption of 1,1-dichloroethene (1,1-DCE) at the Si(1 1 1)-7 × 7 surface has been investigated using scanning tunneling microscopy. 1,1-DCE dissociates upon adsorption by breaking one or both CCl bonds. The appearance of reacted adatoms in the 7 × 7 reconstruction is found to vary for both positive and negative sample bias voltages in the range of 0.8 V to 2.5 V. Dissociated Cl atoms bond to adatom sites and appear bright for bias voltages higher than ±1.4 V. The other dissociated species appear dark for bias voltages below ±1.85 V with a preference of 2:1 for bonding to center relative to corner adatom sites. The faulted half unit cell is preferred. It is demonstrated that rest atoms are active in the dissociation of two-thirds of the 1,1-DCE molecules.  相似文献   

17.
Utilizing BCl3 reaction on Ge(1 0 0) and subsequent Si epitaxial growth by SiH4 reaction at 300 °C, B atomic-layer doping in Si/Ge(1 0 0) heterostructure was investigated. Cl atoms on the B atomic-layer formed Ge(1 0 0) scarcely affect upon the SiH4 reaction. It is also found that Si atom amount deposited by SiH4 reaction on Ge(1 0 0) is effectively enhanced by the existence of B atomic layer and the deposition rate tends to decrease at around 2-3 atomic layers which is three times larger than that in the case without B. The results of angle-resolved X-ray photoelectron spectroscopy show that most B atoms are incorporated at the heterointerface between the Si and Ge.  相似文献   

18.
Jeong-Young Ji 《Surface science》2007,601(7):1768-1774
PH3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PHx-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH3 adsorbs dissociatively on the surface, generating H- and PH2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH2 adsorption. The saturation P coverage is ∼0.18 ML. Annealing of PH3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH3 at 900 K forms P/Si(1 1 1)- surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.  相似文献   

19.
R. Koch 《Surface science》2006,600(20):4694-4701
The (2 × n) superstructure of Si(0 0 1) consists of elongated (2 × 1) reconstructed stripes separated by a dimer-vacancy line every few nanometers, thus offering a means to obtain a nanopattered Si(0 0 1) surface. Scanning tunneling microscopy (STM) investigations of Si(0 0 1) substrates that were deoxidized at 880-920 °C reveal that the formation of the (2 × n) depends strongly on the Si coverage of the topmost surface layer. It forms only in a narrow coverage window ranging from 0.6 to 0.8 ML. Systematic Monte Carlo simulations by an algorithm that combines the diffusion of monomers and dimers with the simultaneous deposition of Si onto the Si(0 0 1) surface, corroborate the STM results and suggest Si deposition as a viable alternative for introducing dimer vacancies in a well-defined manner.  相似文献   

20.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号