首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative experimental study is presented of the electronic properties of MnSi films grown on Si(1 1 1) and of MnSi single crystals, using X-ray absorption spectroscopy (XAS), and core level and valence band photoemission spectroscopy (PES). No significant differences in the electronic structure of the two systems can be found.Absorption measurements on the Mn 2p threshold show a mixed valence ground state, where the multiplet structure is washed out by the hybridisation of the Mn 3d states with the Si sp states. These results are also confirmed by photoemission (PE) spectra from the valence band and the Mn 3s, 3p and 2p core levels.Strong attention has been paid to the effect of contamination. The occurrence of multiplet effects in the absorption spectra indicates unambiguously the localisation of the Mn 3d electrons in Mn-O bonds, which strongly influences the electronic properties of these systems.  相似文献   

2.
The solid-phase epitaxial growth process and surface structure of MnSi on Si(1 1 1) were investigated by coaxial impact-collision ion scattering spectroscopy (CAICISS) and atomic force microscopy (AFM). For the Si(1 1 1) sample deposited with 30 monolayers (ML) of Mn at room temperature, the intermixing of Mn and Si gradually started at 100 °C and reached equilibrium at approximately 400 °C. At this equilibrium state, the Mn atoms were transformed into crystalline MnSi film. Further annealing caused the desorption of Mn atoms. We identified the structure of MnSi as cubic B20 and the crystallographic orientation relationships as Si(1 1 1)//MnSi(1 1 1) and Si[]//MnSi[]. The MnSi(1 1 1) surface was found to have a dense Si terminating layer on its topmost surface. On the other hand, 3 ML of Mn deposited on Si(1 1 1) reacted with Si even at room temperature and formed a pseudomorphic structure. This structure was transformed into MnSi after annealing. A filmlike morphology with protrusions was observed for the sample with 30 ML of Mn, while island growth occurred for the sample with 3 ML of Mn.  相似文献   

3.
In situ X-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM) were used to study the growth of thin cobalt films at room temperature (RT) on both clean and H-terminated Si(0 0 1) and Si(1 1 1) surfaces. The growth proceeds by first forming an initial CoSi2-like phase at the growth front of the Si substrate. With increasing Co coverage the interfacial layer composition becomes richer in Co and eventually a metallic Co film is formed on top. Hydrogen termination of the Si surface did not suppress the reaction of Co and Si. A pseudo-layer-by-layer growth mode is proposed to describe the growth of Co on H-terminated Si surfaces, while closed-packed small island growth occurs on clean Si surfaces. The difference in growth mode can be attributed to the increase in the surface mobility of Co adatoms in the presence of hydrogen.  相似文献   

4.
The structure of thin Al films grown on Si(1 1 1) with thin Cu buffer layers has been investigated using synchrotron radiation photoemission spectroscopy. A thin Cu(1 1 1) layer between the Si(1 1 1) substrate and an Al film may enhance quantum well effects in the Al film significantly. The strength of quantum well effects has been investigated qualitatively with respect to the thickness of the Cu buffer layer and to the Al film thickness. Deposition of Cu on Si(1 1 1)7 × 7 leads to formation of a disordered silicide layer in an initial regime before a well-ordered Cu(1 1 1) film is formed after deposition of the equivalent of 6 layers of Cu. In the regime below 6 layers of Cu the disorder is transferred to Al layers subsequently grown on top. The initial growth of up to 8 layers of Al on a well-ordered Si/Cu(1 1 1) layer leads to a disordered film due to the lattice mismatch between the two metals. When the Cu buffer layer and the Al over-layer are above 6 and 8 layers, respectively the Al film shows sharp low energy electron diffraction patterns and very sharp quantum well peaks in the valence band spectra signalling good epitaxial growth.  相似文献   

5.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

6.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

7.
The growth of ultrathin ZrO2 films on Si(1 0 0)-(2 × 1) and Si(1 1 1)-(7 × 7) has been studied with core level photoelectron spectroscopy and X-ray absorption spectroscopy. The films were deposited sequentially by chemical vapor deposition in ultra-high vacuum using zirconium tetra-tert-butoxide as precursor. Deposition of a > 50 Å thick film leads in both cases to tetragonal ZrO2 (t-ZrO2), whereas significant differences are found for thinner films. On Si(1 1 1)-(7 × 7) the local structure of t-ZrO2 is not observed until a film thickness of 51 Å is reached. On Si(1 0 0)-(2 × 1) the local geometric structure of t-ZrO2 is formed already at a film thickness of 11 Å. The higher tendency for the formation of t-ZrO2 on Si(1 0 0) is discussed in terms of Zr-O valence electron matching to the number of dangling bonds per surface Si atom. The Zr-O hybridization within the ZrO2 unit depends furthermore on the chemical composition of the surrounding. The precursor t-butoxy ligands undergo efficient C-O scission on Si(1 0 0), leaving carbonaceous fragments embedded in the interfacial layer. In contrast, after small deposits on Si(1 1 1) stable t-butoxy groups are found. These are consumed upon further deposition. Stable methyl and, possibly, also hydroxyl groups are found on both surfaces within a wide film thickness range.  相似文献   

8.
The initial stages of iron silicide growth on the Si(1 0 0)2 × 1 surface during solid-phase synthesis were investigated by photoelectron spectroscopy using synchrotron radiation. The experiments were made on iron films of 1-50 monolayer (ML) thickness in the temperature range from room temperature to 750 °С. Our results support the existence of three stages in the Fe deposition on Si(1 0 0) at room temperature, which include formation of the Fe-Si solid solution, Fe3Si silicide and an iron film. The critical Fe dose necessary for the solid solution to be transformed to the silicide is found to be 5 ML. The solid-phase reaction was found to depend on the deposited metal dose. At 5 ML, the reaction begins at 60 °С, and the solid-phase synthesis leads to the formation of only metastable silicides (FeSi with the CsCl-type structure, γ-FeSi2 and α-FeSi2). A specific feature of this process is Si segregation on the silicide films. At a thickness of 15 ML and more, we observed only stable phases, namely, Fe3Si, ε-FeSi and β-FeSi2.  相似文献   

9.
J. Zachariae 《Surface science》2006,600(13):2785-2794
Exploring ways for self-organized structuring of insulating thin films, we investigated the possibility to produce replicas of step trains, given by a vicinal Si(0 0 1)-4°[1 1 0] surface, in layers of crystalline and perfectly lattice-matched Ba0.7Sr0.3O. For this purpose, we carried out high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(0 0 1) and on Si(0 0 1)-4°[1 1 0]. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Our G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation of layer distances. Nevertheless, we are able to show that quite smooth and closed oxide films are obtained with an rms roughness of about 1 ML. These Ba0.7Sr0.3O films directly follow the step train of Sr-modified vicinal Si surfaces that form (1 1 3) oriented facets after adsorption of a monolayer of Sr. This proves that self-organized structuring of insulating films can indeed be an effective method.  相似文献   

10.
A. Bahari  Z.S. Li 《Surface science》2006,600(15):2966-2971
The growth of ultrathin films of Si3N4 directly on Si surfaces is studied with valence band photoemission. The information from these studies about the growth mechanism and the changes of the electronic structure is enhanced by the use of various photon energies with synchrotron radiation. The silicon nitride films are grown isothermally on the Si(1 0 0) and Si(1 1 1) surfaces by reactions with atomic N. The atomic nitrogen is produced by using a remote, microwave excited nitrogen plasma. The growth under these conditions was earlier shown to be self limiting. The details in the valence band spectra are identified and resolved with numerical methods, and followed systematically during the growth. Thus the identification of Si surface states, Si-nitride interface states and bulk nitride states becomes possible. The previously obtained separation between amorphous and crystalline growth occurring around 500 °C is further supported in the present studies.  相似文献   

11.
The growth of 3C-SiC on Si(1 1 1) substrate was performed at different carbonization temperatures and substrate temperatures by solid-source molecular beam epitaxy (SSMBE). The properties of SiC film were analyzed with in situ reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The best carbonization temperature of 810 °C was found to be optimal for the surface carbonization. The quality of SiC film grown on Si at substrate temperature of 1000 °C is best. The worse crystalline quality for the sample grown at higher temperature was attributed to the large mismatch of thermal expansion coefficient between SiC and Si which caused more dislocation when sample was cooled down to room temperature from higher substrate temperature. Furthermore, the larger size of single pit and the total area of the pits make the quality of SiC films grown at higher temperature worse. More Si atoms for the sample grown at lower temperature were responsible for the degradation of crystalline quality for the sample grown at lower temperature.  相似文献   

12.
The structure and morphology of Si/CaF2/Si(1 1 1) structures have been investigated by X-ray diffraction (XRD, GIXRD) and X-ray photoelectron spectroscopy (XPS). While CaF2 films were grown via molecular beam epitaxy (MBE), Si films on CaF2/Si(1 1 1) are fabricated by surfactant enhanced solid phase epitaxy (SE-SPE). Here Boron was used as a surfactant to obtain semiconductor films of homogeneous thickness. The Si films are entirely relaxed while the CaF2 films have both pseudomorphic and relaxed crystallites. After exposure to ambient conditions, the Si films have a very thin native oxide film. The homogeneous Si film partially prevents the incorporation of impurities at the interface between the Si substrate and CaF2 via migration along residual defects of the CaF2 film.  相似文献   

13.
The combination of spin-and charge based electronics in future devices requires the magnetic doping of group IV semiconductors, and the formation of ferromagnetic contacts. The doping of Mn with Si is one of the material systems which is discussed in this context. The present study focuses on the growth of Mn on a Si(100)(2x1) surface, and the evolution of the surface was observed as a function of Mn coverage with synchrotron-based photoelectron spectroscopy. The reaction of Mn with the Si(100) surface at room temperature leads the formation of silicide at the boundary between the Si substrate and the Mn-overlayer, presumably with MnSi stoichiometry. The residual sub-oxide reacts with the Mn and therefore incorporates a few percent of Mn-O-Si at the interface. The analysis of the sub-oxide composition indicates that the Si+1 component is the most reactive oxidation state. The overlayer is dominated by Mn, either as Mn-metal or as a Mn-rich silicide phase, and the metallic layer introduces a band bending in Si. As a consequence of our observations, including information from a recent STM study, the formation of ferromagnetic contacts which require ideally a flat and compositionally homogenous overlayer, cannot be achieved through room temperature deposition of Mn on the Si(100) (2x1) surface. The influence of residual oxides and surface defects on the growth process will be further investigated.  相似文献   

14.
The growth and thermal stability of ultrathin ZrO2 films on the Si-rich SiC(0 0 0 1)-(3 × 3) surface have been explored using photoelectron spectroscopy (PES) and X-ray absorption spectroscopy (XAS). The films were grown in situ by chemical vapor deposition using the zirconium tetra tert-butoxide (ZTB) precursor. The O 1s XAS results show that growth at 400 °C yields tetragonal ZrO2. An interface is formed between the ZrO2 film and the SiC substrate. The interface contains Si in several chemically different states. This gives evidence for an interface that is much more complex than that formed upon oxidation with O2. Si in a 4+ oxidation state is detected in the near surface region. This shows that intermixing of SiO2 and ZrO2 occurs, possibly under the formation of silicate. The alignment of the ZrO2 and SiC band edges is discussed based on core level and valence PES spectra. Subsequent annealing of a deposited film was performed in order to study the thermal stability of the system. Annealing to 800 °C does not lead to decomposition of the tetragonal ZrO2 (t-ZrO2) but changes are observed within the interface region. After annealing to 1000 °C a laterally heterogeneous layer has formed. The decomposition of the film leads to regions with t-ZrO2 remnants, metallic Zr silicide and Si aggregates.  相似文献   

15.
Continuous, atomically flat, and epitaxial Bi(1 1 1) films could be grown on Si(0 0 1). The inherent strain of 2.3% between the Bi(1 1 1) and Si(0 0 1) lattices is relieved by the formation of a grating like one-dimensional misfit dislocation array at the heterointerface. The lattice distortions around each dislocation give rise to a pronounced height depression Δh = 0.12 nm of the surface, which results in a spot splitting in low-energy electron diffraction and a height contrast in scanning tunneling microscopy (STM). Using STM surface profiles across these depressions, the Burgers vector of the underlying isolated non-interacting dislocations is estimated to be 0.377 nm. For thicker Bi films the ordering of the dislocation network is increased. This reflects an increase of repulsive interaction between neighboring dislocations.  相似文献   

16.
We have studied the effects of controlled ion bombardment on the electronic structure of the Si(0 0 1) surface. The surface was exposed to various doses of Ar+ ions accelerated towards the surface at 500 eV. X-ray photoelectron spectroscopy (XPS) spectra of the irradiated H-terminated Si(0 0 1) surface reveal the appearance of peaks that are associated with the presence of cleaved Si bonds. Ultraviolet photoelectron spectroscopy (UPS) spectra of the irradiated Si(0 0 1)2 × 1 surface show that the dimer dangling-bond surface state decays monotonically with increasing dose. These results, coupled with previous scanning tunneling microscopy (STM) studies, indicate that the breaking of dimers, and possibly the creation of adatom-like defects, during ion irradiation are responsible for the changes in the electronic structure of the valence band for this surface.  相似文献   

17.
The reaction of formic acid on Si(1 1 1)-7 × 7 was investigated using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron energy loss spectroscopy (HREELS). The hydroxyl and carbonyl O 1s core levels of chemisorbed formic acid display chemical shifts of 2.4 and 0.2 eV respectively, compared with those of physisorbed molecules. The HREELS spectra of chemisorbed formic acid show the absence of stretching and bending modes of the O-H bond, the appearance of Si-H (2089 cm−1) and the Si-O (680 cm−1) stretching modes and the retained stretching mode of CO at 1703 cm−1. Our results clearly suggest that formic acid dissociates to form monodentate formate species and H-atom on the adatom-rest atom pair of Si(1 1 1)-7 × 7.  相似文献   

18.
The interaction of cobalt atoms with an oxidized Si(1 0 0)2 × 1 surface was studied by photoelectron spectroscopy with synchrotron radiation at room and elevated temperatures. The SiOx layer grown in situ on the crystal surface was ∼0.3 nm thick, and the amount of deposited cobalt was varied within eight atomic layers. It was found that Co atoms could penetrate under the SiOx layer even at room temperature in the initial growth. As the Co amount increased, a ternary Co-O-Si phase was formed at the interface, followed by a Co-Si solid solution. Silicide synthesis associated with the decomposition of these phases started under the SiOx layer at ∼250 °C, producing cobalt disilicide with a stable CaF2-type of structure.  相似文献   

19.
Miniaturizing of electronic devices requires that conductive elements maintain advanced electrical characteristics upon reducing their geometrical sizes. For gold, which is valued for its high electrical conductivity and stability against ambient conditions, creation of extra-thin films on silicon is hampered by formation of the quite complex Au/Si interface. In the present work, by forming a Si(1 1 1)5.55 × 5.55-Cu surface reconstruction prior to Au deposition we formed Au films with smoother surface morphology and higher surface conductivity compared to Au film grown on a pristine Si(1 1 1)7 × 7 surface. Scanning tunnelling microscopy and four-point probe measurements were used to characterize the growth mode of the Au film on a Si(1 1 1)5.55 × 5.55-Cu reconstruction at room temperature.  相似文献   

20.
We report combinatorial molecular beam epitaxy synthesis and properties of a ternary epitaxial film of Co and Mn co-doped Ge grown on Ge (0 0 1) substrate. Structural effects were examined in situ by reflection high-energy electron diffraction and ex situ by microbeam X-ray diffraction techniques, and magnetic properties were probed by using magnetooptic Kerr effect. Ternary epitaxial phase diagrams have been studied for total doping concentrations up to 30 at.%, where regions of coherent epitaxy and rough disordered growth and those of near room temperature ferromagnetic ordering have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号