首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearshore surface sediments from various locations of the West Coast of India were leached by saturated ammonium carbonate solution for the extraction of uranium isotopes. The reagent chosen was found to have high efficiency for leaching uranium isotopes without attacking the mineral core of the sediment particle. The activity ratios of234U/238U are in the range of 1.11 to 1.14 and the activity ratios of235U/235U are in the range of 0.045 to 0.047. The respective activity ratios in leachates, and residues after removal of surface organic matter from the sediment particles by treatment with hydrogen peroxide and 0.05M HCl, revealed disequilibrium between238U and234U only in the surface organic matter. The activity ratios of234U/238U and235U/238U have also been determined in some seawater samples from the Arabian Sea.  相似文献   

2.
Samples of coastal marine sediments of the East Coast of India were leached with a saturated solution of ammonium carbonate for the extraction of uranium from the sediment particle surface without attacking the mineral core of the particles. All the sediment samples were found to exhibit a234U/238U activity ratio in the range of 1.07 to 1.14. On removal of surface organic matter, the234U/238U activity ratio is close to 1.00, indicating that the anomaly between238U and234U exists only on the labile surface layer. However, no such variations are observed in235U/238U activity ratios. These ratios are close to 0.045 which is the same as that of natural uranium.  相似文献   

3.
D. Alamelu 《Talanta》2009,77(3):991-994
A correlation has been developed for the determination of 235U/238U atom ratio in uranium samples using liquid scintillation counting (LSC). The 235U/238U atom ratio determined by thermal ionization mass spectrometry (TIMS) was correlated to the ratio of (i) α-count rate and (ii) Cerenkov count rate due to 234mPa in the sample; both measured by LSC. This correlation is linear over the range of 235U/238U atom ratio encountered in the nuclear fuel samples, i.e. the low enriched uranium (LEU) samples with 235U < 20 atom%. The methodology based on this correlation will be useful for the quick determination and verification of 235U/238U atom ratios in fuel samples using cost effective technique of LSC.  相似文献   

4.
The effect of sediment size, pH, temperature and conductivity on the transfer of uranium from sediment to water has been studied. The uranium concentration and the234U/238U,235U/238U activity ratios were measured in water, sediments and suspended matter sampled from Jucar River, using low level alpha-spectrometry. Distribution factors were obtained from these measurements. A more detailed sampling was done in the neighbourhood of the Cofrentes Nuclear Plant (Valencia, Spain). Total uranium activity,234U/238U activity ratio and distribution factors for234U and238U were found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes.  相似文献   

5.
An analytical method for the ultratrace and isotopic analysis of uranium in radioactive waste samples using a double-focusing sector field ICP mass spectrometer is described. In high-purity water a detection limit for uranium in the lowest fg/mL range has been achieved. Under optimum experimental conditions (235U/238U ≈ 1), the precision in 235U/238U isotopic ratio determinations has been determined as 0.07% RSD. With the isotopic standard U-020 (235U/238U = 0.0208) a precision of 0.23% RSD at the 100 pg/mL level using ultrasonic nebulization has been achieved. With 234U/238U isotopic ratios of down to 10–5, the values obtained by double-focusing sector field ICP-MS and alpha spectrometry were in agreement. Received: 27 February 1997 / Revised: 10 Juni 1997 / Accepted: 12 June 1997  相似文献   

6.
The capability of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of uranium isotope ratios in individual particles was determined. For this purpose, we developed an experimental procedure including single particle transfer with a manipulator, chemical dissolution and isotope ratio analysis, and applied to the analysis of individual uranium particles in certified reference materials (NBL CRM U050 and U350). As the result, the 235U/238U isotope ratio for the particle with the diameter between 0.5 and 3.9 μm was successfully determined with the deviation from the certified ratio within 1.8%. The relative standard deviation (R.S.D.) of the 235U/238U isotope ratio was within 4.2%. Although the analysis of 234U/238U and 236U/238U isotope ratios gave the results with inferior precision, the R.S.D. within 20% was possible for the measurement of the particle with the diameter more than 2.1 μm. The developed procedure was successfully applied to the analysis of a simulated environmental sample prepared from a mixture of indoor dust (NIST SRM 2583) and uranium particles (NBL CRM U050, U350 and U950a). From the results, the proposed procedure was found to be an alternative analytical tool for nuclear safeguards.  相似文献   

7.
Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235U/238U “major” isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the “minor” 234U/238U and 236U/238U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235U/238U isotope-amount ratios. Characterized values of the 234U/238U and 236U/238U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233U/238U isotope-amount ratio in CRM 115 is estimated to be <5 × 10?9. The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed.  相似文献   

8.
Summary From the viewpoint of environmental radioactivity monitoring, the determination of uranium and its isotope ratio is important for identifying and assessing the environmental impact of any unexpected release from nuclear facilities. In this work, a survey was conducted to determine 238U concentrations and 235U/238U atom ratios in coastal waters off Rokkasho Village, Aomori, Japan, where several uranium-related nuclear facilities have been operating since 1992, and a newly constructed nuclear fuel reprocessing plant is scheduled to be commissioned in 2006. Seawater samples were analyzed directly after a 10-fold dilution using isotope dilution sector-field ICP-MS. Based on the results, we concluded that there is no observable uranium contamination in the investigated sites. In addition, for the first time, a correlation between uranium concentration and salinity was established in coastal waters using the SF-ICP-MS technique.  相似文献   

9.
The determination of uranium isotope ratios in individual particles is of great importance for nuclear safeguards. In the present study, an analytical technique by inductively coupled plasma mass spectrometry (ICP-MS) with a desolvation sample introduction system was applied to isotope ratio analysis of individual uranium particles. In ICP-MS analysis of individual uranium particles with diameters ranging from 0.6 to 4.2 μm in a standard reference material (NBL CRM U050), the use of the desolvation system for sample introduction improved the precision of 234U/238U and 236U/238U isotope ratios. The performance of ICP-MS with desolvation was compared with that of a conventionally used method, i.e., secondary ion mass spectrometry (SIMS). The analysis of test swipe samples taken at nuclear facilities implied that the performance of ICP-MS with desolvation was superior to that of SIMS in a viewpoint of accuracy, because the problems of agglomeration of uranium particles and molecular ion interferences by other elements could be avoided. These results indicated that ICP-MS with desolvation has an enough ability to become an effective tool for nuclear safeguards.  相似文献   

10.
The uranium concentration and the234U/238U,235U/238U activity ratios were studied in water samples from Jucar River, using low-level -spectrometry. The effects of pH, temperature and salinity were considered and more detailed sampling was done in the neighbourhood of Cofrentes Nuclear Plant (Valencia, Spain). Changes were observed in the uranium concentration with the salinity and the234U/238U activity ratio was found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes in the concentration of uranium and the activity ratios.  相似文献   

11.
The surface leaching of the labile component of uranium has been carried out in estuarine sediments of Zuari river in Goa. The measurements of alpha activities of238U,235U and234U in the leachates indicated a remarkable anomaly between the activities of238U and234U. The activity ratios of234U/238U in these leachates have been found to be in the range of 1.10 to 1.14. However, the activity ratios of235U/238U have been found to be 0.045 which is close to that in natural uranium. It has also been observed that the anomaly between238U and234U exists only on the surface organic layers of the backwater sediments of the Zuari river.  相似文献   

12.
Activity concentrations of 238U, 235U and 234U were determined in different sources of drinking water at the Obuasi gold mines and its surrounding areas in Ghana. Water samples collected from the mines and its surrounding areas were analyzed using direct gamma-ray spectrometry and neutron activation analysis. The 234U/238U and 235U/238U ratios were calculated and the mean values range from 1.27 to 1.38 and from 0.044 to 0.045 respectively. The average 234U/238U ratio was from 1.27 for groundwater to 1.38 for treated water, demonstrating the lack of equilibrium. The average 235U/238U activity ratio is 0.045, indicating that only natural uranium was detected in the samples investigated.  相似文献   

13.
The determination of isotope ratios in individual uranium particles is very important for nuclear safeguards. In this work, accelerator mass spectrometry (AMS), thermal ionization mass spectrometry (TIMS), and secondary ion mass spectrometry (SIMS) were applied to isotope ratio analysis of individual uranium particles and compared in terms of background, measurement accuracy, and efficiency. Several individual uranium particles (1–7 μm) from certified reference materials were used as samples. The results show that the average values of blank counting rate of 235U for AMS, FT-TIMS (FT: fission track), SEM-TIMS (SEM: scanning electron microscope), and SIMS were 7.3, 7.8, 2.7 and 2.2 cps, respectively. The relative error of 234U/235U and 234U/236U isotope ratios of the particles from U200 for AMS were within 10% and 20%, whereas the results of FT-TIMS and SIMS were within 5% and 10%, respectively. The relative error and external precision of 234U/238U and 235U/238U of the particles from U850 for the method of AMS, SEM-TIMS, and SIMS were within 10% and 5%, respectively. For 236U/238U, the average values of the relative error and external precision measured by AMS were within 5%, which measured by SEM-TIMS and SIMS were all within 10%. AMS has advantages in measuring 236U/238U. The measurement time of AMS and SEM-TIMS was shorter than that of FT-TIMS and longer than that of SIMS. It is considered that AMS and SEM-TIMS have a certain development prospect, and it is necessary to research deeply.  相似文献   

14.
We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 616). The uranium in this series of SRM glasses is a combination of isotopically natural uranium in the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. However, other than atom percent 235U, little information is available for the remaining glasses. We present atom percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in NIST 610-616.  相似文献   

15.
High-resolution alpha-particle spectrometry was performed on three uranium materials enriched in 235U. Besides the 235U peaks, separate peaks belonging to impurity traces of 234U could be quantified. Relying on the isotopic composition of the uranium, as determined by mass spectrometry, the ratio of the half-lives of 238U and 235U was determined via the activity ratio of 234U and 235U in the materials. As an intermediate link, the 234U/238U half-life ratio was taken from published mass spectrometric analyses of ‘secular equilibrium’ uranium material. The resulting half-life ratio T 1/2(238U)/T 1/2(235U) = 6.351±0.031 is in agreement with the commonly adopted half-life values determined by Jaffey et al.  相似文献   

16.
The concentrations and activity ratios of the radionuclides aroundthe nuclear facilities located in Taejon were determined. The concentrationsand activity ratios of uranium isotopes in the downstream decreased with increasingdistances from the point of discharge and reached the reference value after4 km. The concentrations of uranium isotopes in the brook around LWR fuelfabrication facilities were lower than those in the downstream around HWRand LWR fuel fabrication facilities, while the activity ratios of 234U/238U in the brook were higher than those in the downstream.The concentrations of uranium isotopes in the ground water measured quarterlywere variable depending on the sampling time. The concentrations of the grossalpha of airborne particulates collected around the nuclear facilities werefound to be in the narrow range of 0.02 to 0.10 mBq/m3 with a meanvalue of 0.05 mBq/m 3 . Both the concentrations and activity ratios of 137Cs, 239,240Pu and 90 Sr around the nuclearfacilities were not very different from the worldwide fallout. The concentrationsof uranium isotopes in the soil samples around the nuclear facilities werevery close to natural background levels.  相似文献   

17.
As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF–ICP–MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF–ICP–MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4×10–4 and 10–3 counts per atom were achieved for 238U in DF–ICP–QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2×10–4 and 1.4×10–4, respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 μg L–1 NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/238U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10–5 to 10–3. Results obtained with ICP–MS, α- and γ-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.  相似文献   

18.
The determination of isotopes of uranium by alpha spectrometry in different environmental components (sediments, soil, water, plants and phosphogypsum) is presented and discussed in this paper. The alpha spectrometry is a very convenient and good technique for activity concentration of natural uranium isotopes (234U, 235U, 238U) in environmental samples and provides the most accurate determination of isotopic activity ratios between 234U and 238U. The analysis were provided information about possible sources of high concentrations of uranium in the examined sites determined by anthropogenic sources. The calculation of values 234U/238U in all analyzed samples was applied to identifying natural or anthropogenic uranium origin. Activity concentration of uranium isotopes in analyzed environmental samples shows that measurement of uranium levels is of great importance for environmental and safety assessment especially in contaminated areas (phosphogypsum waste heap).  相似文献   

19.
Geochemical radioanalytical studies of groundwater were performed in the valleys of Villa de Reyes and San Luis Potosi (Mexico). The experiments were designed to measure radon and uranium content and234U/238U activity ratio in groundwater samples taken from wells in these sites and at the Nuclear Center of Salazar, Mexico.222Rn content varied depending on the sample source, reaching a maximum value of 235 pCi/l; uranium concentration results were less than 1 g/1 and234U/238U activity ratios were close to equilibrium.  相似文献   

20.
234U/238U α-activity ratios determined by α-spectrometry (AS) and those calculated from the atom ratio data using the half-life values are compared in some of the isotopic reference materials of uranium and a few other uranium samples. For α-spectrometry, electrodeposited sources were prepared and a large area passivated ion implanted (IPE) detector (450 mm2) was used for recording the α-spectra. The isotopic composition of U was determined by thermal ionisation mass spectrometry (TIMS) and the recommended half-life values of234U and238U were used to calculate the α-activity ratio. It is observed that234U/238U α-activity ratios calculated from the atom ratio data are consistently high, with a mean difference of about 5%, when compared to the α-spectrometry results. This discrepancy warrants confirmation by a few more laboratories and suggests redetermination of the half-life values of234U and238U.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号