首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both fluoroalkylsilane (FAS) and octadecyltrimethoxysilane (ODS) were coated on oxidized silicon wafers using soaking and CVD method. Smooth coatings with Ra values of less than 1 nm were attained. The slope of the sliding acceleration against the inverse of the droplet mass showed an inflection point. That point shifted to the direction of smaller droplets with decreasing FAS ratio to ODS. The water droplets’ length was increased when the sliding velocity was increased. Fluoroalkylsilane addition to ODS increases the interaction between water and the hydrophobic surface. Results showed that the sliding acceleration of a water droplet depends strongly on the surface ratio of these silanes.  相似文献   

2.
微矩形凹槽表面液滴各向异性浸润行为的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
受自然界启发,仿生微结构被广泛用于调控固-液界面的性质.研究显示,液滴在微结构表面的各向异性浸润行为可用于实现微流动方向和速度的控制,且其各向异性浸润与微结构的尺寸和分布等密切相关.本文研究了微矩形凹槽尺寸对液滴各向异性浸润行为的影响规律.结果显示,液滴沿平行沟槽的方向具有较小的运动阻力、易铺展,因此具有较小接触角;而垂直于沟槽方向,由于沟槽的阻隔作用具有较大运动阻力,因而具有较大接触角,并且在垂直方向液滴的浸润过程是三相线一系列钉扎和跳跃行为.在微矩形凹槽表面,液滴沿平行方向接触角θ//与肋板宽度R和凹槽宽度G密切相关,其值与表面固体面积比成反比;而垂直于沟槽方向的接触角θ⊥随肋板宽度R和凹槽宽度G变化基本保持不变.同时各向异性液滴的变形比L/W、特征方向接触角比值θ⊥/θ//与表面固体面积比成正比.研究结果有助于加深理解微结构表面浸润行为的机制,并为微矩形凹槽在微流动控制方向的应用提供技术支持.  相似文献   

3.
This study measured sliding acceleration of water droplets on hydrophobic solid surfaces and used expanding and contracting method to compare that value with dynamic contact angles. Sliding action of the droplet was classified into three motion categories: constant accelerated motion, constant velocity and stasis. Differences exist in the dependencies of contact radius and the injection-suction rate in dynamic contact angle hysteresis according to these categories. This method is an effective indicator of water droplets’ sliding acceleration.  相似文献   

4.
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.  相似文献   

5.
Wetting behavior of solid surfaces is a key concern in our daily life as well as in engineering and science. In the present study, we demonstrate a simple dip coating method for the preparation of Thermally stable, transparent superhydrophobic silica films on glass substrates at room temperature by sol-gel process. The coating alcosol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), trimethylmethoxysilane (TMMS), methanol (MeOH), water (H2O) constant at 1:0.09:12.71:3.58, respectively with 13 M NH4OH throughout the experiments and the films were prepared with different deposition time varied from 5 to 25 h. In order to improve the hydrophobicity of as deposited silica films, the films were derivatized with 10% trimethylchlorosilane (TMCS) as a silylating agent in hexane solvent for 24 h. Enhancement in wetting behavior was observed for surface derivatized silica films which showed a maximum static water contact angle (172°) and minimum sliding angle (2°) for 25 h of deposition time. The superhydrophobic silica films retained their superhydrophobicity up to a temperature of 550 °C. The silica films were characterized by field emission scanning electron microscopy (FE-SEM), surface profilometer, Fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric and differential thermal analysis (TG-DTA), percentage of optical transmission, water contact angle measurements. The imperviousness behavior of the films was tested with various acids.  相似文献   

6.
The problems caused by the adhesive force and friction force become more critical when the size of M/NEMS devices shrinks to micro/nano-scale. The nanotexture-patterned surface is an effective approach to reduce friction force on micro/nano-scale. Laser interference lithography is an attractive method to fabricate micro/nanotextures, which is maskless and allows large area periodical structures to be patterned by a couple of seconds’ exposure in a simple equipment system. We fabricate various nanogrooves with different pitch and space width on silicon wafers by laser interference lithography and chemical etching. We investigate the nanotribological properties of the patterned surfaces by AFM/FFM. We show that friction on the nano/micro-scale is related to the coverage rate of the nanogrooves, which decreases with increase in the space width and decrease in the pitch.  相似文献   

7.
Wetting phenomena of water droplets on solid are of crucial concern in our daily life as well as in engineering and science. The present paper describes the room temperature synthesis of superhydrophobic silica films on glass substrates using trimethylethoxysilane (TMES) as a co-precursor. The coating sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:38.6:8.68, respectively, with 2 M NH4OH throughout the experiments and the TMES/TEOS molar ratio (M) was varied from 0 to 1.1. It was found that with an increase in M value, the hydrophobicity of the films increased, however the optical transmission decreased from 88% to 82% in the visible range. The hydrophobic silica films retained their hydrophobicity up to a temperature of 275 °C and above this temperature the films became superhydrophilic. The hydrophobic silica films were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FT-IR) spectroscopy, percentage of optical transmission, humidity test and static and dynamic contact angle measurements.  相似文献   

8.
The nanotribology mechanism of alkanethiol self-assembled monolayers (SAM) chemisorbed on a gold surface under a non-flat contact by a tilt plane was studied using molecular dynamics (MD) simulations. The molecular trajectories, tilt angles, normal forces, shear forces, and frictional coefficient of the SAM were evaluated during the friction and relaxation processes for various parameters, including the tilt angle of the slider, interference magnitude, and SAM length. At the nanoscale, the magnitude of interface interactional forces is strongly dependent on the magnitude of the contact area, not on the surface geometry. The contact area and the exerted normal force of the SAM increase with decreasing the tilt angle of the slider at the same contact interference. In contrast, the periods in both normal force and shear force are gradually delayed as the tilt angle of the slider increases. Once the contact interference increases, the normal force and shear force increase together. During the sliding friction process with a smaller tilt slider angle, SAM molecules can maintain a better collective ordered structure. Short SAM molecules are more sensitive to a compressive loading and react to a larger normal force under the same contact interference due to the deformation of a larger tilt angle and decrease in chain length. The friction coefficient of SAM is significantly more dependent on the tilt angle of the slider than the contact interference.  相似文献   

9.
Ag ink was spontaneously patterned on glass substrate by using the surface energy difference of a pre-patterned octadecyltrichlorosilane (OTS) layer. Ag ink was confined into the hydrophilic area, where OTS layer was not formed. OTS layer was selectively transferred by micro-contact printing (μCP) method and significantly decreased surface energy. As a result, surface of glass substrate was separated as hydrophobic and hydrophilic with and without OTS layer, respectively. Ag line could be successfully patterned with the width of below 10 μm on the glass. The patterned Ag line was dense and abrupt on the edge and the thickness was about 0.25 μm. Ag film showed good adhesion on a glass substrate after anneal above 200 °C. The minimum resistivity was about 4 μΩ cm.  相似文献   

10.
Direct-writing technology based on Near-Field Electrospinning (NFES) was used to fabricate an organic three-dimensional nanofibrous circle on the patterned silicon substrate. In NFES, straight jet without splitting and chaotic motion was utilized to direct-write orderly nanofiber. When the collector movement speed was lower than electrospinning rate, the relaxed nanofiber would be lead into the pendulum motion by the electrical field force and Coulomb repulsion force from the residual charges on the collector. When the relative air humidity is lower than 35%, individual nanofiber with larger elastic resistance would reveal a good self-assembly performance. Owing to the guidance of the electric field force at the edge of the micro-pattern, a nanofiber was deposited layer by layer to format a 3D nanofibrous circle on the top surface of the micro-pattern. The dimension scale of 3D nanofibrous circle was smaller than 30 μm. With the help of a microscope, a 3D nanofibrous circle can be deposited precisely on the strip micro-pattern with width of 4 μm. Furthermore, a 3D nanofibrous circle in different shapes can be obtained by using special micro-patterns. This organic three-dimensional nanofibrous circle has created a new aspect for the fabrication of organic micro/nanosystems.  相似文献   

11.
《Composite Interfaces》2013,20(4-5):489-504
Multi-component micropatterned organosilane monolayers are fabricated on a Si-wafer substrate by stepwise site-specific vacuum ultraviolet (VUV)-ray photodecomposition and chemisorption. The introduction of different organosilane components is confirmed by X-ray photoelectron spectroscopy (XPS). Atomic force microscopic and lateral force microscopic observations reveal that the line-widths of the micropatterned surface correspond to those of the photomask. Contact angle measurement reveals that the micropatterning of the surface functional groups influences the magnitudes of surface free energy. A line pattern with high wetting contrast shows anisotropic water condensing behavior. Also, the patterned surface is used for the site-specific polymerization and site-specific adsorption of microparticles.  相似文献   

12.
Two types of recording media possessing nanodot structures were investigated. The media were prepared by an artificially assisted self-assembling (AASA) method, which includes simple nanopatterning using a nanoimprint and fine nanopatterning using self-assembling organic molecules. One type of recording media is circumferential magnetic patterned media prepared on a 2.5-in.-diam glass plate. A Ni master disk possessing spiral patterns with 60-250 nm width lands and a 400 nm width groove was pressed to a resist film on a CoCrPt film to transfer the spiral patterns. A diblock copolymer solution was cast into the obtained grooves, and then annealed to prepare self-assembling dot structures aligned along the grooves. According to the dot patterns, the lower magnetic films were patterned by ion milling to yield patterned media with 40 nm diameter. We have also prepared FePt dot media with high magnetic anisotropy for near-field and magnetic-field hybrid recording aiming at more than 1 Tbin.2 density. A Ni stamp disk with aligned dot structures was also prepared by the AASA method to produce patterned media at the lowest cost. The other type of media was organic patterned media for X-Y type near-field optical storage. Bulky dye molecules were evaporated in vacuum to produce self-assembling amorphous nanodots. The dots were arranged by the AASA method, i.e., according to the polymethylmethacrylate film hole arrays or chemically patterned surface.  相似文献   

13.
《Current Applied Physics》2010,10(4):1203-1210
A mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness) covered by a spin-coated soft polymeric mask layer (50–60 nm in thickness) has been introduced. The surface stochastic properties of initial grooves mechanically patterned on the mask layer (grooves before chemical wet-etching) and the lithographed patterns on the metallic thin film (the grooves after chemical wet-etching) have been investigated and compared by using the structure factor, power spectral density, and AFM tip deconvolution analyses. The effective shape of cross section of the before and after etching grooves have been determined by using the tip deconvolution surface analysis. The wet-etching process improved the shape of the grooves and also smoothed the surface within them. We have indicated that relaxation of the surface tension of the deposited mask layer after the AFM scribing is independent from surface density of the grooves and also their length scale. Based on the statistical analysis, it was found that increase of the width of the grooves after the wet-etching and also relaxation of surface tension of the mask layer resulted in a down limit in the size of the metallic nanowires made by the combined nanolithography method. An extrapolation of the analyzed statistical data has indicated that, in this method, the minimum obtainable width and length of the metallic nanowires are about 55 nm and 2 μm, respectively.  相似文献   

14.
A new constructive method of fabricating a nanoparticle self-assembly on the patterned surface of a poly(dimethylsiloxane) (PDMS) relief nanostructure was demonstrated. Patterned PDMS templates with close-packed microwells were fabricated by molding against a self-assembled monolayer of polystyrene spheres. Alkanethiol-functionalized gold nanoparticles with an average particle size of 2.5 nm were selectively deposited onto a hydrophobic self-assembled monolayer printed on the substrate by the micro-contact printing (μCP) of the prepared PDMS microwell, in which the patterned gold nanoparticles consisted of close-packed hexagons with an average diameter of 370 nm. In addition, two-dimensional colloidal crystals derived from PMMA microspheres with a diameter of 380 nm and a negative surface charge were successfully formed on the hemispherical microwells by electrostatic force using positively charged PAH-coated PDMS as a template to produce multidimensional nanostructures.  相似文献   

15.
曾建邦  李隆键  廖全  蒋方明 《物理学报》2011,60(6):66401-066401
在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0 关键词: 格子Boltzmann方法 池沸腾 气泡生长过程 接触角  相似文献   

16.
不同沉积条件下,在单晶硅基底上沉积了含氮氟化类金刚石(FN-DLC)薄膜,用静滴接触角/表面张力测量仪测量了水与FN-DLC膜表面的接触角.用X射线光电子能谱、Raman光谱和傅里叶变换吸收红外光谱(FTIR)分析了薄膜的组分和结构.用原子力显微镜观测了薄膜的表面形貌.结果表明,FN-DLC薄膜疏水性能主要取决于薄膜表面的化学结构、薄膜表面极化强度的强弱、以及薄膜的表面粗糙度的大小.sp3/sp2的比值减小,CF2基团含量增加,薄膜粗糙度增加,接触角增大;反之,则接触角减小.在工艺上,沉积温度和功率的减小,气体流量比r(r=CF4/[CF4+CH4])的增加,都会使水的浸润性变差,接触角增大. 关键词: 氟化类金刚石膜 疏水性 接触角  相似文献   

17.
The analysis of wetting behavior of self-assembled monolayers of alkylsilanes is presented. A simple model accounting for various surface fractions of CH3 and CH2 groups (self-assembly order/disorder) is used. The effect of inclusion of air in the structure of rough silanized surfaces is also considered. The importance of reduced solid–water contact area and assembly order of organic monomers is demonstrated for achieving both high contact angle and low sliding angle. As coatings with low surface energy, these materials may be of potential use for ice-repellent purposes.  相似文献   

18.
We introduce the novel method of self-propelling slugs for the biosample delivery for the application of a microcantilever biosensor. By implementing a surface patterned microstructure with a hydrophobic SU8 barrier, we demonstrated a top plate-less channel for biosample delivery without external electrokinetic force or pressure-driven flows. With a simply-patterned hydrophobic layer both on SiO2 and Au surfaces, which was favourably used for the biosensor surface, we were able to drive PBS solutions onto cantilever sensors by capillary actions. The measured flow velocity of the SU8 barrier with SiO2 surface reveals a linear increase with barrier height. With the Au bottom surface, we observed that the flow velocity is inversely proportional to channel width, at approximately 100 μm, while proportional linearly below 100 μm. The present micro-patterned structure integrated with microcantilever could help us with the ease of integrating the fluidic channel as well as multiplexing for bio/chemical sensors.  相似文献   

19.
A lotus-effect coating was fabricated by wrapping micro-silica and nano-silica with polyurethane (PU) and subsequent spraying. The coating shows the similar self-cleaning property as lotus leaves: the contact angle is as large as 168° and the sliding angle is as low as 0.5°. Surface morphology of the coating was studied with scanning electron microscopy and atomic force microscopy. The composite coating shows the similar structure as lotus leaves.  相似文献   

20.
To improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs), periodic semisphere patterns with 3.5 μm width, 1.2 μm height, and 0.8 μm spacing were formed on sapphire substrate by dry etching using BCl3/Cl2 gas chemistry. The indium tin oxide (ITO) transparent conductive layer was patterned by wet etching to reduce the total internal reflection existing along between p-GaN, ITO, and air. At 350 mA injection current, the high power LED by integrating patterned sapphire substrate with patterned ITO technology exhibited a 36.9% higher light output power than the conventional LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号