首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
This paper describes the nanoscratch behavior of Zn1−xCdxSe epilayers grown using molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Hysitron Triboscope nanoindenter techniques were employed to determine the microstructures, morphologies, friction coefficients (μ), and hardnesses (H) of these materials, and thereby propose an explanation for their properties in terms of nanotribological behavior. Nanoscratch analysis revealed that the coefficient of friction of the Zn1−xCdxSe epilayer system decreased from 0.172 to 0.139 upon increasing the Cd content (x) from 0.07 to 0.34. Furthermore, studies of the scratch wear depth under a ramping load indicated that a higher Cd content provided the Zn1−xCdxSe epilayers with a higher shear resistance, which enhanced the strength of the CdSe bonds. These findings suggest that the greater stiffness of the CdSe bond, relative to that of the ZnSe bond, enhances the hardness of the epilayers. Indeed, the effect of the Cd content on the growth of the Zn1−xCdxSe epilayers is manifested in the resulting nanotribological behavior.  相似文献   

2.
We investigated the nanotribological properties of Zn1−xMnxO epilayers (0 ≤ x ≤ 0.16) grown by molecular beam epitaxy (MBE) on sapphire substrates. The surface roughness and friction coefficient (μ) were analyzed by means of atomic force microscopy (AFM) and hysitron triboscope nanoindenter techniques.The nanoscratch system gave the μ value of the films ranging from 0.17 to 0.07 and the penetration depth value ranging 294-200 nm when the Mn content was increased from x = 0 to 0.16. The results strongly indicate that the scratch wear depth under constant load shows that higher Mn content leads to Zn1−xMnxO epilayers with higher shear resistance, which enhances the Mn-O bond. These findings reveal that the role of Mn content on the growth of Zn1−xMnxO epilayers can be identified by their nanotribological behavior.  相似文献   

3.
Zn1−xGdxS (x = 0.00, 0.02 and 0.04) nanoparticles were synthesized by facile chemical co-precipitation method using PVP as a surfactant. ZnS nanoparticles could be doped with Gd ions during synthesis without altering the XRD patterns of ZnS. Also, the pattern of the powders showed cubic zincblende structure. The particle size obtained from the XRD studies lies in the range 3-5 nm, whereas from TEM analysis it is 4 nm for x = 0.02 sample. The UV-Vis absorption spectra revealed that Zn1−xGdxS nanoparticles exhibit strong confinement effect as the blue shift in the absorption spectra with that of the undoped ZnS. The photoluminescence spectra showed enhanced luminescence intensity and the entry of Gd into host lattice.  相似文献   

4.
Ge self-assembled quantum dots (SAQDs) grown on a relaxed Si0.75Ge0.25 buffer layer were observed using an atomic force microscopy (AFM) and a transmission electron microscopy (TEM). The effect of buried misfit dislocations on the formation and the distribution of Ge SAQDs was extensively investigated. The Burgers vector determination of each buried dislocation using the g·b = 0 invisibility criterion with plane-view TEM micrographs shows that Ge SAQDs grow at specific positions related to the Burgers vectors of buried dislocations. The measurement of the lateral distance between a SAQD and the corresponding misfit dislocation with plane-view and cross-sectional TEM images reveals that SAQDs form at the intersections of the top surface with the slip planes of misfit dislocations. The stress field on the top surface due to misfit dislocations is computed, and it is found that the strain energy of the misfit dislocations provides the preferential formation sites for Ge SAQDs nucleation.  相似文献   

5.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

6.
Mn0.06Ge0.94 samples have been grown by molecular-beam epitaxy on Ge(0 0 1)2 × 1. High-resolution transmission electron microscopy shows the coexistence of an ordered diluted Mn0.06Ge0.94 film and of nanoscopic crystallites, which were identified as Mn5Ge3 by electron diffraction. The magnetic properties of the Mn0.06Ge0.94 samples show a superposition of a paramagnetic behavior, due to the interaction of Mn atoms diluted in the Ge host, and a ferromagnetic behavior attributed to the Mn5Ge3 crystallites dispersed into the films. The Mn L2,3 X-ray absorption spectra of the Mn0.06Ge0.94 films exhibit a lineshape typical of metallic Mn, with considerably reduced multiplet structure.  相似文献   

7.
Amorphous SixC1−x films possess the potential to improve wear performance in humid atmospheres and at higher temperatures. But some experimental work on the films showed that silicon contents greatly influenced their microstructures and mechanical properties. Therefore, simulations of molecular dynamics were carried out to predict structures of the SixC1−x films at different silicon contents. The results show that the sp3/sp2 ratio of all the films increases, but the stiffness of the films is decreasing with an increase in silicon contents. Moreover, silicon atoms are almost surrounded by carbon atoms, which is in agreement with the experiments.  相似文献   

8.
Germanium quantum dots (QDs) were extracted from ultrathin SixGe1−x oxide films using scanning tunneling microscope (STM) tips. The extraction was most efficiently performed at a positive sample bias voltage of +5.0 V. The tunneling current dependence of the extraction efficiency was explained by the electric field evaporation transfer mechanism for positive Ge ions from QDs to STM tips. Ge QDs (∼7 nm) were formed and isolated spatially by extracting the surrounding Ge QDs with an ultrahigh density of >1012 cm−2. Scanning tunneling spectroscopy of the spatially-isolated QDs revealed that QDs with an ultrahigh density are electrically-isolated from the adjacent dots.  相似文献   

9.
Gd5(SixGe1−x)4, known for its giant magnetocaloric effect, also exhibits a colossal strain of the order of 10,000 ppm for a single crystal near its coupled first-order magnetic-structural phase transition, which occurs near room temperature for the compositions 0.41≤x≤0.575. Such colossal strain can be utilised for both magnetic sensor and actuator applications. In this study, various measurements have been carried out on strain as a function of magnetic field strength and as a function of temperature on single crystal Gd5Si2Ge2 (x=0.5), and polycrystalline Gd5Si1.95Ge2.05 (x=0.487) and Gd5Si2.09Ge1.91 (x=0.52). Additionally a giant magnetostriction/thermally induced strain of the order of 1800 ppm in polycrystalline Gd5Si2.09Ge1.91 was observed at its first order phase transition on varying temperature using a Peltier cell without the use of bulky equipment such as cryostat or superconducting magnet.  相似文献   

10.
We report measurements of the phonon density of states as probed with inelastic X-ray scattering in SmFeAsO1−xFy powders. An unexpected strong renormalization of phonon branches around 23 meV is observed as fluorine is substituted for oxygen. Phonon dispersion measurements on SmFeAsO1−xFy single crystals allow us to identify the 21 meV A1g in-phase (Sm,As) and the 26 meV B1g (Fe,O) modes to be responsible for this renormalization, and may reveal unusual electron-phonon coupling through the spin channel in iron-based superconductors.  相似文献   

11.
The lattice parameters at 25°C have been measured on powders with a precision of one part in 3(104) for (Pb1−ySny)1−xTex for y = 1·0, 0·90, 0·80,and0·00 and values of x both without and, for the first threey-values, within the composition stability range. For the first threey-values, the composition stability limits for samples metal-saturated at 400°C is 0·5000 ± 0·0002, while those for samples Te-saturated at 356°C is x = 0·5070fory = 1·0, x = 0·5056fory = 0·90,andx = 0·5038fory = 0·80. The fine powders pick up oxygen quickly in air, which reacts with the Pb and Sn upon heating to deplete the telluride solid-solution of metal and consequently reduce its parameter by 2–3(10−3)Å. The metals are substantially all returned to the telluride phase upon H2-reduction at 500–600°C. The present results for SnTe are used to extend the sources of data used in an analysis of SnTe. This analysis shows that the ratio of the number of valence band holes per Sn-vacancy, c, to the 77°K Hall factor, r, is 3·2 ± 0·3 over the entire range of 3(1019) to 1·8(1021) cm−3 in the apparent hole concentration. The results for the solid solutions are extrapolated to give the atomic fraction of Te in the 356°C, Te-saturated solid solution for y < 0·8. Comparison with the electrical measurements of others gives c/r equal to about unity for y = 0·27and0·13.  相似文献   

12.
We report on the structural and magnetic properties of nanoparticles of MnxCo1−xFe2O4 (x=0.1, 0.5) ferrites produced by the glycothermal reaction. From the analysis of XRD spectra and TEM micrographs, particle sizes of the samples have been found to be about 8 nm (for x=0.1) and 13 nm (for x=0.5). The samples were characterized by DC magnetization in the temperature range 5-380 K and in magnetic fields of up to 40 kOe using a SQUID magnetometer. Mössbauer spectroscopy results show that the sample with higher Mn content has enhanced hyperfine fields after thermal annealing at 700 °C. There is a corresponding small reduction in hyperfine fields for the sample with lower Mn content. The variations of saturation magnetization, remnant magnetization and coercive fields as functions of temperature are also presented. Our results show evidence of superparamagnetic behaviour associated with the nanosized particles. Particle sizes appear to be critical in explaining the observed properties.  相似文献   

13.
In this study, structural properties of epitaxial Ga-doped Mg0.1Zn0.9O layers grown on ZnO/α-Al2O3 templates by plasma-assisted molecular beam epitaxy have been investigated by high-resolution transmission electron microscopy (HRTEM), and high resolution X-ray diffraction (HRXRD). From analysis of the diffraction pattern, the monocrystallinity of the Mg0.1Zn0.9O layer with hexagonal structure is confirmed. The orientation relationship between Mg0.1Zn0.9O and the template is determined as (0 0 0 1)Mg0.1Zn0.9O(0 0 0 1)ZnO(0 0 0 1)Al2O3 and [ [ ]ZnO[ . The density of dislocations near the top surface layers measured by plan-view TEM is about 3.61010 cm−2, one order of magnitude higher than the value obtained for ZnO layers on α-Al2O3 with a MgO buffer. Cross-sectional observation revealed that the majority of threading dislocations are in the [0 0 0 1] line direction, i.e. they lie along the surface normal and consist of edge, screw, and mixed dislocations. Cross- sectional TEM and X-ray rocking curve experiments reveal that most of dislocations are edge dislocations. The interface of Mg0.1Zn0.9O and ZnO layers and the effect of excess Ga-doping in these layers have been also studied.  相似文献   

14.
In this paper we have introduced a simple method for the fabrication of aluminum doped zinc oxide (AZO) nanoparticles. The Zn1−xAlxO nanoparticles with different concentrations of Al (x=0.01, 0.03, 0.06, 0.09, 0.12) were fabricated successfully by this method. The samples were analyzed by the use of several techniques such as SEM, EDX, XRD, PL and UV-vis spectroscopy. The SEM images showed that the fabricated nanoparticles had spherical shapes. The XRD patterns of the samples indicated that the Al atoms substituted in the Zn positions in the crystal lattice of ZnO and there were some changes in the lattice parameters. A blue shift in the λmax of the absorption and a red shift in the λmax of the emission were observed. The results also indicated that the amount of shifts had a direct relationship with the changes in the lattice parameters.  相似文献   

15.
We report cryogenic scanning tunneling spectroscopy measurements on single crystals of superconducting FeSe1−xTex, at doping levels of x=0.5 and 0.7, with critical temperatures . Atomically resolved topographic images were obtained, showing large-scale density-of-state clustering which appears to have no periodicity and to vary with the doping. Conductance spectra taken at 300 mK showed a generally asymmetric V-shaped background, along with a sharp dip structure within . These spectra appeared to vary over ∼nm length scale, and not correlated with the topography. The overall spectral evolution versus temperature is consistent with the dip structure arising from a superconducting energy gap which closes above Tc, and with the spectral background having a non-superconducting origin. The persistence of finite zero-bias conductance down to 300 mK, well below Tc, indicates the presence of low-energy quasiparticles on parts of the Fermi surface. We discuss our data in light of some other recent spectroscopic measurements of FeSe1−xTex, and in terms of its characteristic band structure.  相似文献   

16.
Undoped and Cr (2 and 4 at.%) doped CdS nanoparticles were synthesized in aqueous solution by simple chemical co-precipitation method using polyvinylpyrrolidone (PVP) as stabilizer. The prepared nanoparticles were examined using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDAX), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). XRD pattern of the nanoparticles showed cubic zincblende phase with the particle size of the order of 3-4 nm, which was in good agreement with the results obtained from TEM studies. The EDAX analysis confirmed that Cd, Cr and S elements were present in the samples and the variations between the target and actual compositions were microscopic. UV-vis DRS spectra of the samples exhibited decrease in the band gap which further attests the incorporation of Cr into CdS nanoparticles. FTIR studies revealed that the undoped as well as Cr doped CdS nanoparticles were capped by polyvinylpyrrolidone.  相似文献   

17.
The local micro-structure as well as the magnetic and transport properties of CrxGe1−x films prepared by means of magnetron sputtering have been investigated. Structural analysis shows that Cr atoms are situated in substitutional sites in the Ge lattice. Electrical transport properties indicate that Cr introduces a shallow acceptor level at 0.016 eV from the valence band implying Cr substituting for Ge. The low temperature ferromagnetism observed in the films is mediated mainly by ferromagnetic superexchange interactions between diluted Cr ions.  相似文献   

18.
The surface modification of Cd1−xMnxTe (x = 0-0.3) crystal wafers under pulsed laser irradiation has been studied. The samples were irradiated by a Q-switched ruby laser with pulse duration of 80 ns. Optical diagnostics of laser-induced thermal processes were carried out by means of time-resolved reflectivity measurements at wavelengths 0.53 and 1.06 μm. Laser irradiation energy density, E varied in the range of 0.1-0.6 J/cm2. Morphology of irradiated surface was studied using scanning electron microscopy. The energy density whereby the sample surface starts to melt, depends on Mn content and is equal to 0.12-0.14 J/cm2 for x ≤ 0.2, in the case of x = 0.3 this value is about 0.35 J/cm2. The higher Mn content leads to higher melt duration. The morphology of laser irradiated surface changes from a weakly modified surface to a single crystal strained one, with an increase in E. Under irradiation with E in the range of 0.21-0.25 J/cm2, the oriented filamentary crystallization is observed. The Te inclusions on the surface are revealed after the irradiation of samples with small content of Mn.  相似文献   

19.
Two alloys of the Co-Ge system were produced by mechanical alloying starting from the elemental powders in the compositions Co20Ge80 and Co40Ge60. The crystalline structures of the CoxGe100−x (x=20, 40) alloys obtained were investigated using the X-ray diffraction (XRD) technique. The measured XRD patterns showed the presence of the peaks corresponding to the crystalline m-CoGe phase and also to the high pressure and temperature phase c-CoGe in the as-milled sample for Co20Ge80, although it was milled at room temperature and pressure. For Co40Ge60, the crystalline Co3Ge2 phase was obtained, and structural data for all phases were determined by means of a Rietveld refinement procedure. The thermal stability of the phases was investigated performing a heat treatment of the alloys at 450 °C for 6 h and, after that, new XRD measurements were collected and were also studied using a Rietveld refinement procedure. The m-CoGe and Co3Ge2 phases seem to be very stable, but the relative amount of c-CoGe decreases a little, indicating a less stable phase, which can be explained by the fact that it is produced usually under extreme conditions.  相似文献   

20.
Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and “impurities” of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号