首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
InxGa1−xAs layers on InP substrate can be subjected to compressive or tensile strain due to lattice parameter differences depending on the alloy composition. In order to examine in details the strain of InGaAs/InP epiatxial layers and its evolution after subjecting the layers to annealing at high pressure, X-ray synchrotron topography, high resolution X-ray diffraction and atomic force microscopy have been employed. The data show that the changes of structural properties of the InGaAs layers subjected to high temperature-high pressure treatment at 670 K-1.2 Gpa, strongly depend on initial strain state and defect structure. The annealing of samples under high pressure results in change of strain in tensile layers only. The behaviour of observed defects is discussed.  相似文献   

2.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

3.
A theoretical study on the structural, elastic, electronic and lattice dynamic properties of AlxYyB1−xyN quaternary alloys in zinc-blend phase has been carried out with first-principles methods. Information on the lattice parameter, the lattice matching to available substrates and energy band-gaps is a prerequisite for many practical applications. The dependence of the lattice parameter a, bulk modulus B, elastic constants C11, C12 and C44, band-gaps, optical phonon frequencies (ωTO and ωLO), the static and high-frequency dielectric coefficients ε (0) and ε () and the dynamic effective charge Z? were analyzed for y=0, 0.121, 0.241, 0.362 and 0.483. A significant deviation of the bulk modulus from linear concentration dependence was observed. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young's modulus, Poisson's ratio are numerically estimated in the frame work of the Voigt-Reuss-Hill approximation. The resistance to changes in bond length and lateral expansion in AlxYyB1−xyN increase with increasing y concentration. We observe that at y concentration about 0.035 and 0.063, AlxYyB1−xyN changes from brittle to ductile and Γ-X indirect fundamental gap becomes Γ-Γ direct fundamental gap. There is good agreement between our results and the available experimental data for the binary compound AlN, which is a support for those of the quaternary alloys that we report for the first time.  相似文献   

4.
Bismuth layer-structured (Bi7−xSrx)(Fe3−xTi3+x)O21 (BSFT) ceramics were synthesized and the ferroelectric properties and crystal structure were investigated. X-ray powder diffraction profiles and refinement of the lattice parameters indicated single phase BSFT was obtained in the composition range 0-1.5. The lattice parameter b of BSFT remained almost constant, while a slight decrease in the lattice parameter a was observed by the Sr and Ti substitution for Bi and Fe, respectively, which indicated an increase in the orthorhombicity. The dependence of the BSFT lattice parameter on temperature implied a phase transition from the orthorhombic to the tetragonal phase, which was in good agreement with the Curie temperature. The remnant polarization Pr, of BSFT was significantly improved by the Sr and Ti substitution for Bi and Fe, and ranged from 9 to 16 μC/cm2, although no remarkable variation in the coercive field Ec was observed. As a result, a well-saturated P-E hysteresis loop of BSFT ceramic was obtained at x=0.5 with a Pr of 30 μC/cm at an applied voltage of 280 kV/cm.  相似文献   

5.
The influence of the substitution of Ga atoms for Co atoms in DyCo2 compounds on magnetocaloric properties has been investigated. A series of DyCo2−xGax alloys with x=0, 0.03, 0.06, 0.1, 0.15, and 0.2 was prepared by the arc-melting method for this investigation. Experimental results revealed that the Ga substitution for Co in DyCo2 can form a single phase with the cubic Laves phase structure up to x=0.2. As the Ga content x increases, the lattice parameter and the Curie temperature Tc increases from 143 to 196 K linearly. The maximum magnetic entropy changes in a low field change of 0-1.5 T, increasing from 8.24 to 10.61 J/K kg when the Ga content x increases from 0 to 0.03, but decreasing gradually to 3.51 J/K kg as the Ga content further increases to x=0.2. All the samples show a relatively large magnetic entropy change with very small hysteresis loss.  相似文献   

6.
The static magnetic properties of the polycrystalline solid solutions MnxMg1-xS(0<x?1) are reported. The experimental data reveal the appearance of a critical concentration xc=0.13±0.01 for long-range magnetic ordering, which is in good agreement with the result of a series expansion of the mean cluster size for a face-centered cubic lattice with exchange interactions up to 12 nearest neighbours and 6 next-nearest neighbours. At concentrations far below xc the existence of long-range exchange interactions is demonstrated.  相似文献   

7.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

8.
Structural, magnetic properties and magnetostriction studies of Sm1−xNdxFe1.55 (0≤x≤0.56) alloys have been performed. X-ray diffraction analysis confirms the presence of single cubic Laves phase in Sm1-xNdxFe1.55 alloys with 0≤x≤0.48. The lattice parameter of alloys increases linearly with increase in Nd content while the Curie temperature behaves in the opposite way. The alloy x=0.08 exhibits a giant magnetostriction value (λ-λ) of −2187 ppm at a magnetic field of 12 kOe due to the anisotropy compensation between Sm3+ and Nd3+ ions.  相似文献   

9.
Un-hydrogenated and hydrogenated Cu, Co co-doped ZnO (Zn0.96−xCo0.04CuxO, x=0.03, 0.04 and 0.05) nanopowders have been synthesized by co-precipitation method. The synthesized samples have been characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–Visible spectrophotometer and Fourier transform infrared spectroscopy. The calculated average crystalline size increases from 37.3 to 50.6 nm for un-hydrogenated samples from x=0.03 to 0.05 and it changes from 29.4 to 34.9 nm for hydrogenated samples. The change in lattice parameters, micro-strain, a small shift of X-ray diffraction peaks towards lower angles and reduction in energy gap reveal the substitution of Cu2+ ions into Zn–Co–O lattice. The hydrogenation effect reduces the particle size and induces the more uniform distribution of particles than the un-hydrogenated samples which is confirmed by SEM micrographs. Photoluminescence spectra of Zn0.96−xCo0.04CuxO system shows that red shift in near band edge ultraviolet emission from 393 to 403 nm with suppressing intensity and a blue shift in green band emission from 537 to 529 nm with enhancing intensity confirms the substitution of Cu into the Zn–Co–O lattice.  相似文献   

10.
Structural and magnetic properties of Cu substituted Ni0.50−xCuxZn0.50Fe2O4 ferrites (where x=0.0-0.25) prepared by an auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. The lattice parameter increases with the increase in Cu2+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 22 to 72 nm. The theoretical density increases with increase in copper content whereas the Néel temperature decreases. The bulk density, grain size and permeability increases up to a certain level of Cu2+ substitution, beyond that all these properties decrease with increase in Cu2+ content. The bulk density increases with increase in sintering temperatures up to 1250 °C for the parent composition, while for substituted compositions it increases up to 1200 °C. Due to substitution of Cu2+, the real part of the initial permeability increases from 97 to ∼390 for the sample sintered at 1100 °C and from 450 to 920 for the sample sintered at 1300 °C. The ferrites with higher initial permeability have a relatively lower resonance frequency, which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity. The saturation magnetization, Ms, and the number of Bohr magneton, n(μB), decreases up to x=0.15 due to the reduction of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n(μB) values are enhanced. The substitution of Cu2+ influences the magnetic parameters due to modification of the cation distribution.  相似文献   

11.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

12.
The interplay between the superconducting phase and spin density wave order phase was studied. We report the magnetic and superconducting properties of the hole-doped FeAs-based superconducting compound La0.87−xLnxSr0.13FeAsO (Ln=Sm, Gd, Dy; 0≤x≤0.06). Both resistivity and magnetic susceptibility measurements show that the superconducting transition temperature decreases with increase in composition of magnetic ions. The hysteresis loop of the La0.87−xLnxSr0.13FeAsO sample shows a superconducting hysteresis in addition to a paramagnetic background. The experiment demonstrates that the magnetism and superconductivity coexist in hole-doped FeAs-based superconducting compounds. Among these three magnetic rare-earth elements, the influence of Dy3+ doping on superconductivity is more evident than that of Gd3+ doping, while the influence of Sm3+ doping is the weakest. The trend is consistent with the variation of the lattice parameter along c-axis.  相似文献   

13.
The structural, electronic and elastic properties of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys have been investigated by using the plane-wave pseudopotential method within the density-functional theory. The calculations indicate that the variations of the equilibrium lattice constants and bulk modulus with the composition are found to be linear. The calculated elastic constants C44 and shear constants as a function of alloy concentration reveal the anisotropic hardness of these compounds. The partial and total density of states (DOS) for the binary and ternary compounds had been obtained, and the metallic behavior of these alloys had been confirmed by the analysis of DOS.  相似文献   

14.
Zn1−xGdxS (x = 0.00, 0.02 and 0.04) nanoparticles were synthesized by facile chemical co-precipitation method using PVP as a surfactant. ZnS nanoparticles could be doped with Gd ions during synthesis without altering the XRD patterns of ZnS. Also, the pattern of the powders showed cubic zincblende structure. The particle size obtained from the XRD studies lies in the range 3-5 nm, whereas from TEM analysis it is 4 nm for x = 0.02 sample. The UV-Vis absorption spectra revealed that Zn1−xGdxS nanoparticles exhibit strong confinement effect as the blue shift in the absorption spectra with that of the undoped ZnS. The photoluminescence spectra showed enhanced luminescence intensity and the entry of Gd into host lattice.  相似文献   

15.
In this work we report on the properties of ZnO and Zn1−xCdxO films formed on top of CdTe and CdZnTe single crystals. The films have been obtained by thermal evaporation of Zn metal films and further oxidation in atmospheric conditions. The structural and compositional characteristics of the films have been analysed by means of scanning electron microscopy and energy-dispersive X-ray analysis. The chemical composition of the films as a function of growth parameters has been obtained. It has been possible to demonstrate by Raman spectroscopy the formation of both ZnO and Zn1−xCdxO films. The possible inter-diffusion effects between the films and the substrate, derived from the oxidation process, have been discussed. It has been possible to check by means of photoluminescence, the optical quality of the ZnO and Zn1−xCdxO films, also regarding to the presence of local changes. Differences between the optical spectra obtained from various ZnO films grown on top of CdTe and CdZnTe substrates enabled the determination of compositional differences introduced by the substrate when the deposition parameters are modified.  相似文献   

16.
Compositions of polycrystalline Mg-Zn mixed ferrites with the general formula Mg1−xZnxFe2O4 (0≤x≤1) were prepared by the standard double sintering ceramic method. The structural properties of these ferrites have been investigated using X-ray diffraction and infrared absorption spectroscopy. The lattice parameter, particle size, bonds length, force constants, density, porosity, shrinkage and cation distribution of these samples have been estimated and compared with those predicted theoretically. Most of these values were found to increase with increasing Zn content. The energy dispersive (EDS) analysis confirmed the proposed sample composition. The scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs showed aggregates of stacked crystallites of about 200-800 nm in diameter. Far infrared absorption spectra showed two significant absorption bands. The wave number of the first band, ν1, decreases with increasing Zn content, while the band, ν2 shifts linearly towards higher wave numbers with Zn contents, over the whole composition range. The room temperature electrical resistivity was found to decrease as Zn-content increases. Values of the vacancy model parameters showed that the packing factors Pa and Pb decrease, the fulfillment coefficient, α, remains almost constant and the vacancy parameter, β, strongly increases with increasing Zn content in the sample. The small values of Pa, Pb, α and the strong increase of the vacancy parameter, β, indicate the presence of cation or anion vacancies and the partial participation of the Zn2+ vacancies in the improvement of the electrical conductivity in the Mg-Zn ferrites.  相似文献   

17.
The antireflection Germanium carbide (Ge1-xCx) coating, deposited using RF reactive sputtering, on both sides of ZnS substrate wafer has been developed. The infrared (IR) transmittance spectra show that the IR transmittance in the wavelength region between 8 and 12 μm for the designed system Ge1-xCx/ZnS/Ge1-xCx is greatly enhanced compared to that for ZnS substrate. In addition, the double-layer coated ZnS substrate is approximately four times as hard as uncoated ZnS substrate. This investigation indicates that a double-layer Ge1-xCx coating can be used as an effective antireflection and protection coating on ZnS infrared window.  相似文献   

18.
We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa1−xBa1.75−xLa0.25+xCu3Oy (0≤x≤0.4 and 6.4≤y≤7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.  相似文献   

19.
Deposited with different oxygen partial pressures and substrate temperatures, MgxZn1−xO thin films were prepared using a Mg0.6Zn0.4O ceramic target by magnetron sputtering. The structural and optical properties of the prepared thin films were investigated. The X-ray diffraction spectra reveal that all the films on quartz substrate are grown along (2 0 0) orientation with cubic structure. The lattice constant decreases and the crystallite size increases with the increase of substrate temperature. Both energy dispersive X-ray spectroscopy and calculated results suggest the ratio of Mg/Zn increases with increasing substrate temperature. The thin film deposited with Ts = 500 °C has a minimal rms roughness of 7.37 nm. The transmittance of all the films is higher than 85% in the visual region. The optical band gap is not sensitive to the oxygen partial pressure, while it increases from 5.63 eV for Ts = 100 °C to 5.95 eV for Ts = 700 °C. In addition, the refractive indices calculated from transmission spectra are sensitive to the substrate temperature. The photoluminescence spectra of MgxZn1−xO thin films excited by 330 nm ultraviolet light indicate that the peak intensity of the spectra is influenced by the oxygen partial pressure and substrate temperature.  相似文献   

20.
X-ray powder diffraction and magnetization measurements have been carried out on Rh2Mn1+xSn1−x (0≤x≤0.3) alloys. The alloys, which crystallize in the L21 structure, were found to exhibit ferromagnetic behavior. The lattice constant a at room temperature decreases with increasing x, whereas the Curie temperature TC decreases linearly. At 5 K the magnetic moment per formula unit first increases with increasing x and then saturates for x≥0.2. The experimental results are discussed in terms of the influence of the Mn-Mn exchange interactions between the Mn atoms on the Sn and Mn sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号