首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

2.
Ming-Shu Chen 《Surface science》2007,601(22):5162-5169
The adsorption of K atoms on Cu(0 0 1) has been studied by low-energy electron diffraction (LEED) at room temperature (RT) and 130 K. At RT, a (3 × 2)-p2mg LEED pattern with single-domain was observed at coverage of 0.33, whereas the orthogonal two-domain was found at 130 K. At 130 K, a c(4 × 2) pattern with orthogonal two-domain was observed at coverage 0.25. Both the (3 × 2)-p2mg and c(4 × 2) structures have been determined by a tensor LEED analysis. It is demonstrated that K atoms are adsorbed on surface fourfold hollow sites in the c(4 × 2), while in the (3 × 2) structure two K atoms in the unit cell are located at an asymmetric site with a glide-reflection-symmetry. The asymmetric site is at near the midpoint between the exact hollow site and bridge-site but slightly close to the hollow site. A rumpling of 0.07 Å in the first Cu layer was confirmed, which might stabilize K atoms at the asymmetric site. Surface structures appearing in a coverage range 0.25-0.33 are discussed in terms of the occupation of the asymmetric site with increase of coverage.  相似文献   

3.
An initial oxidation dynamics of 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface has been studied using high resolution X-ray photoelectron spectroscopy and supersonic molecular beams. Clean 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface was exposed to oxygen molecules with translational energy of 0.5 eV at 300 K. In the first step of initial oxidation, oxygen molecules are immediately dissociated and atomic oxygens are inserted into Si-Si back bonds to form stable oxide species. At this stage, drastic increase in growth rate of stable oxide species by heating molecular beam source to 1400 K was found. We concluded that this increase in growth rate of stable oxide is mainly caused by molecular vibrational excitation. It suggests that the dissociation barrier is located in the exit channel on potential energy hypersurface. A metastable molecular oxygen species was found to be adsorbed on a Si-adatom that has two oxygen atoms inserted into the back bonds. The adsorption of the metastable species is neither enhanced nor suppressed by molecular vibrational excitation.  相似文献   

4.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

5.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

6.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

7.
The electronic structure of the FCC, HCP and 2-fold bridge phases of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) surface alloy have been investigated using LCAO-DFT. Analysis of the total electron density, partial density-of-states (PDOS) and crystal orbital overlap population (COOP) curves for the system have shown a surprising similarity between the intra- and inter-layer Si-Cu bond for each phase. Low hybridization between the Si 3s and 3p orbitals results in a low directionality of the Si-Cu bond within each of phase. The Si 3s orbitals are shown to form covalent bonds with their surrounding Cu atoms whereas the Si 3p and 3d orbitals are shown to form combinations of covalent and metallic bonds. The Si-Cu interaction is shown clearly to extend to the second layer of the alloy in deference to previous studies of Si/Cu alloys.  相似文献   

8.
We present a comprehensive picture of structural and electronic properties of the TiC(0 0 1)(1 × 1) surface. Our investigations are based on first-principles calculations within the local-density approximation of the density-functional theory. Good agreement has been observed between our calculation and experimental data for the atomic geometry of the surface. In particular, the calculated bond lengths between the first-layer C and the second-layer Ti (d1C-2Ti = 2.188 Å) and between the first-layer Ti and the second-layer C (d1Ti-2C = 2.031 Å) are in good agreement with the corresponding experimental values of 2.25 Å and 2.14 Å, respectively. We have also identified surface electronic states and provided clear support for previously available photoemission measurements. We have further calculated surface phonon modes at the zone centre and at the zone-edge point X using a linear response scheme based on the ab initio pseudopotential method. Our calculated surface phonon results are in excellent agreement with electron energy loss spectroscopy results.  相似文献   

9.
The (√3 × √3)R30°-Cu2Si/Cu(1 1 1) surface alloy that forms during high temperature dosing of silane (SiH4) on Cu(1 1 1) has been investigated using LCAO-DFT. Simulated STM images have shown that experimental images may be interpreted as a mixed phase system consisting of Si ion cores bound in HCP, FCC and twofold bridge sites with a ratio of 25:25:50 rather than previously proposed models where the Si ion cores were bound in only FCC and HCP sites. The new model is shown to be consistent with previously published NIXSW studies.  相似文献   

10.
The reaction of halogen-based etchants with n-InAs (1 1 1)A and the resulting surface morphology and surface electronic structure are investigated using field emission scanning electron microscopy and Raman spectroscopy. Using the intensity ratio of the unscreened longitudinal optical (LO) phonon to the transverse optical (TO) phonon in the Raman spectrum, a significant reduction in band bending is deduced after exposure of the InAs surface to HCl:H2O, Br–methanol and I–ethanol for moderate times and concentrations. These procedures also lead to smooth and defect-free InAs surfaces. The improvements in surface properties are reversed, however, if the concentrations of the etchants are increased or the etch time is too long. In the worst cases, pit formation and inverted pyramids with {1 1 1} side facets are observed. The influence of the etchant concentration and etch time on the morphological and electronic properties of the etched surfaces is reported.  相似文献   

11.
Various contrast of topographic images depending on a state of a tip apex on Sn/Si(1 1 1)-(√3 × √3)R30° surface was investigated using a low temperature non-contact AFM. With the type A tip, the image of the ring-type Sn, composed of six Sn atoms surrounding substitutional Si defect, was observed when the frequency shift (∣Δf∣) was small (the tip-sample distance, Ztip-sample, was long), while the ring-type Sn was not observed and all the Sn atoms have the same contrast when ∣Δf∣ was large (Ztip-sample was short). On the other hand, with the type B tip, modified from the type A tip by the tip-sample contact, the image of the ring-type Sn atoms was not observed regardless of variation of Δf. It is the first experimental result on the low temperature NC-AFM observation in the Sn/Si(1 1 1) system, which depends on short-range chemical bonding force or electrostatic force acting between the tip and the sample surface. In addition, the substitutional Si defects on the surface were seen as a dim spot or were not seen, also depending on the tip state.  相似文献   

12.
We test the response of the √3 × √3α reconstructions formed by 1/3 monolayer of tin adatoms on silicon and germanium (1 1 1) surfaces upon doping with electrons or holes, using potassium or iodine as probes/perturbers of the initial electronic structures. From detailed synchrotron radiation photoelectron spectroscopy studies we show that doping with either electrons or holes plays a complimentary role on the Si and Ge surfaces and, especially, leads to complete conversion of the Sn 4d two-component spectra into single line shapes. We find that the low binding energy component of the Sn core level for both Si and Ge surfaces corresponds to Sn adatoms with higher electronic charge, than the Sn adatoms that contribute to the core level high binding energy signal. This could be analyzed as Sn adatoms with different valence state.  相似文献   

13.
Ab initio calculations of the reflectance anisotropy of Si(1 1 1)-In surfaces are presented. A very pronounced optical anisotropy around 2 eV is found that is related to In-chain states. The distortion of the indium chains characteristic for the (4 × 1) → (8 × 2) phase transition results in a splitting of the 2 eV peak, as observed experimentally. The splitting occurs irrespective wether the phase transition occurs according to the trimer or hexamer model.  相似文献   

14.
We have performed an angle resolved photoemission spectroscopy with high energy and high momentum resolutions and have observed the k dependent energy dispersion curves of the striped Cu(1 1 0)(2 × 1)O surface. It is found that the Shockley surface state electron is confined in the clean surface along the perpendicular direction to the stripes and forms a quantum well state (QWS). It has also been clearly observed that an electron of Cu-O antibonding state is confined within the oxygen covered surface.  相似文献   

15.
The characteristic energy band values such as the Fermi-level position with respect to valence band top for a boron-doped p-type hydrogen-terminated chemical-vapor-deposition (CVD) diamond (0 0 1)2 × 1 surface and for a clean CVD diamond (0 0 1)2 × 1 surface have been determined by a new method with an accuracy of ±0.02 eV. The electron attenuation length for the clean diamond (0 0 1)2 × 1 surface for the electron kinetic energy of C 1s X-ray photoemission peak by Mg Kα excitation is experimentally determined to be 2.1-2.2 nm. These values are compared and discussed with the previously reported experimental and simulation values.  相似文献   

16.
We use an ab initio pseudopotential method within the local-density approximation to determine the structural and electronic properties of the BeSe(1 1 0) surface. The relaxed geometry of this surface shows tilted cation-anion chains, with the anions being raised. The general pattern of the electronic structure of this surface is similar to that on other II-VI(1 1 0) surfaces. The phonon spectrum and corresponding surface density of states are also calculated using a linear response approach based on the density functional perturbation theory. In our calculations, we have found two localized phonon modes in the acoustic-optical gap region. The atomic displacement patterns of these surface phonon modes are presented and discussed.  相似文献   

17.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

18.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

19.
M.N. Read  Q.Y. Qiu 《Surface science》2007,601(24):5779-5782
We have used the layer KKR method to calculate the Shockley and Rydberg surface states and resonances for Cu(1 1 0) for a given model of the surface potentials. This method has not been used before to predict all of the surface band structure for the energy range from the bottom of the conduction band to ∼7 eV above the vacuum level. The previous methods that used only local electron interactions in ab initio calculations could not produce the Rydberg surface barrier bands while those relying on nearly-free-electron parameterisation of bands could not deal with d-bands.  相似文献   

20.
Structure and energy related properties of neutral and charged vacancies on relaxed diamond (1 0 0) (2 × 1) surface were investigated by means of density functional theory. Calculations indicate that the diffusion of a single vacancy from the top surface layer to the second layer is not energetically favored. Analysis of energies in charged system shows that neutral state is most stable on diamond (1 0 0) (2 × 1) surface. The multiplicity of possible states can exist on diamond (1 0 0) surface in dependence on the surface Fermi level, which supports that surface diffusion of a vacancy is mediated by the change of vacancy charge states. Analysis of density of states shows surface vacancy can be effectively measured by photoelectricity technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号