首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed four kinds of adsorbed NO molecules on Pt(9 9 7) at 11 K using infrared reflection absorption spectroscopy (IRAS). The peaks at 1690, 1484 and 1615 cm−1 are assigned to the N-O stretching modes of the on-top site and the hollow site on the terrace and the bridge site at the step, respectively. The 1385 cm−1 peak is observed below ∼70 K. We assign the 1385 cm−1 peak to the hollow site of the (1 1 1) microfacet at the step or the lower-terrace hollow site nearest to the step. By heating, site-to-site hopping to the more stable site occurs and the relative stability of four adsorption sites can be determined.  相似文献   

2.
Formation of the platinum silicides nanostructures and their electronic properties have been studied using scanning tunneling microscopy and scanning tunneling spectroscopy. The investigated structures have been grown by solid state epitaxy upon deposition of the Si atoms (coverage about 0.2 ML) and sequential annealing at temperature range 600-1170 K. The formation of the Pt2Si and PtSi islands was investigated until the Si atoms embedded into the Pt substrate at the 1170 K. The images of the silicides structures and Pt substrates with atomic resolution have been recorded. The evolution of the spectroscopic curves both for substrates and nanostructures, corresponding to the structural and sizes changes, have been shown.  相似文献   

3.
The adsorption of Pd, Ag and Au atoms on a porous silica film on Mo(1 1 2) is investigated by scanning tunneling microscopy and density functional theory. While Pd atoms are able to penetrate the holes in the silica top-layer with virtually no barrier, Ag atoms experience an intermediate barrier value and Au atoms are completely unable to pass the oxide surface. The penetration probability does not correlate with the effective size of the atoms, but depends on their electronic structure. Whereas Pd with an unoccupied valence s-orbital has a low penetration barrier, Ag and Au atoms with occupied s-states experience a substantial repulsion with the filled oxide states, leading to a higher barrier for penetration. In the case of Ag, the barrier height can be temporally lowered by promoting the Ag 5s-electron into the support. The Mo-supported silica film can thus be considered as a primitive form of an atomic sieve whose selectivity is controlled by the electronic structure of the adatoms.  相似文献   

4.
The Ga-adsorbed structure on Si(1 1 3) surface at low coverage has been studied by scanning tunneling microscopy (STM). The bright protrusion corresponding to the position of the dimer without the interstitial Si atom of the clean surface disappeared in the filled-state STM image after Ga adsorption, although the protrusion due to the Si adatom still remained. On the basis of the adatom-dimer-interstitial (ADI) model, this result indicates that the Ga atom is adsorbed interstitially at the center of another pentamer that does not have the interstitial Si atom. An ab initio calculation was performed and STM images were simulated.  相似文献   

5.
The ground state of the Ag/Si(1 1 1)-(3 × 1) has been investigated by low temperature scanning tunneling microscopy (STM) and density-functional theory. The Fourier transform of the STM image reveals a (6 × 2) reconstruction, which is theoretically found to yield a reconstruction with lower energy than the (3 × 1). The most stable (6 × 2) structural model leads to excellent correspondence between experimental and simulated STM images, and reveals a dimerization of the silver atoms in the channels formed by neighbouring honeycomb Si chains.  相似文献   

6.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   

7.
The electronic structure of GaAs(1 1 0) surface is analyzed using Density Functional Theory (DFT-GGA) in atomic orbital basis (LCAO). The surface orbitals and the corresponding local density of electronic states (LDOS) are calculated for purposes of interpreting STM images. We show how local atomic orbitals of surface atoms are related to tunneling channels for electrons in STM imaging. A destructive interference between orbitals of two neighbouring atoms increases the contrast between the two atoms, and this is reflected in directionality of STM patterns of GaAs(1 1 0) surfaces. We also discuss how the basic formalism of Tersoff-Hamann approach to STM simulation can be reformulated to reveal the role of phase difference between tunneling channels.  相似文献   

8.
The adsorption of the two butane isomers on Pt(1 0 0) has been characterised with use of density functional simulations. The adsorption energies corresponding to various adsorption configurations were evaluated in good agreement with experimental values. Limited changes of the molecular structure were evidenced. The C-H bond length increases at a degree depending on the surface-hydrogen distance, while the C-C bond length remains similar to that of the free molecule. The surface on-top Pt sites exert a preferential attraction on the molecule, probably through the interaction with the H atoms. The local density of states curves around H as well as C of the adsorbed molecules show dispersed states below the metal Fermi level indicating a molecule-Pt mixing demonstrating a chemical interaction.  相似文献   

9.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

10.
A new microscopic model, based on DFT/LDA modeling, is suggested for the Langmuir-Hinshelwood reaction of catalytic CO oxidation in coadsorbed O-CO layers on Pt(1 1 1). It has been found that only the oxygen atoms occupying threefold hollow sites of hcp type are chemically active. The potential barrier for the oxidation reaction significantly decreases due to changes in the adlayer oxygen states in the proximity to CO. The oxygen electronic density distribution is affected by approaching CO molecule which alters the oxygen position. Height of the barrier is estimated as 1.15 eV, which may be attributed to the upper limit of activation energy for the net reaction process.  相似文献   

11.
M.A.K. Zilani 《Surface science》2007,601(12):2486-2490
We demonstrate the growth of Fe-induced magic clusters on Si(1 1 1)-(7 × 7) template by in situ scanning tunneling microscopy (STM). These clusters form near a dimer row at one side of the half-unit cell (HUC); and with three different equivalent orientations. A cluster model comprising three top layer Si atoms bonded to six Fe atoms at the next layer in the 7 × 7 faulted-half template is proposed. The optimized cluster structure determined by first-principles total-energy calculation shows an inward-shifting of the three center Fe atoms. The clusters and the nearby center-adatoms of the next HUCs appear with a significantly reduced height below bias voltages 0.4 V in high resolution empty-state STM images, suggesting an energy gap opening near the Fermi level at these localized cluster and adatom sites. We explain the stabilization of the clusters on the 7 × 7 template using the gain in electronic energy as the driving force for cluster formation.  相似文献   

12.
K. Doll 《Surface science》2004,573(3):464-473
The adsorption of CO on the Pt(1 1 1) surface in a pattern has been studied with the gradient corrected functional of Perdew and Wang and the B3LYP hybrid functional. A slab which is periodic in two dimensions is used to model the system. The Perdew-Wang functional incorrectly gives the fcc site as the most favorable adsorption site, in accord with a set of previous studies. The B3LYP functional gives the top site as the preferred site. This confirms results from cluster studies where it was suggested that the different splitting, dependent on the functional, between highest occupied and lowest unoccupied molecular orbital, could be the reason for this change of the adsorption site. This is supported by an analysis based on the projected density of states and the Mulliken population.  相似文献   

13.
I. Nakamura 《Surface science》2006,600(16):3235-3242
Reactions between NO and CO on Rh(1 1 1) surfaces were investigated using infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. NO adsorbed on the fcc, atop, and hcp sites in that order, whereas CO adsorbed initially on the atop sites and then on the hollow (fcc + hcp) sites. The results of experiments with NO exposure on CO-preadsorbed Rh(1 1 1) surfaces indicated that the adsorption of NO on the hcp sites was inhibited by preadsorption of CO on the atop sites, and NO adsorption on the atop and fcc sites was inhibited by CO preadsorbed on each type of site, which indicates that NO and CO competitively adsorbed on Rh(1 1 1). From a Rh(1 1 1) surface with coadsorbed NO and CO, N2 was produced from the dissociation of fcc-NO, and CO2 was formed by the reaction of adsorbed CO with atomic oxygen from dissociated fcc-NO. The CO2 production increased remarkably in the presence of hollow-CO. Coverage of fcc-NO and hollow-CO on Rh(1 1 1) depended on the composition ratio of the NO/CO gas mixture, and a gas mixture with NO/CO ? 1/2 was required for the co-existence of fcc-NO and hollow-CO at 273 K.  相似文献   

14.
Adsorption of Na on the Ge(0 0 1) surface is known to be a cause of surface reconstruction. It is expected to find one Na atom per unit cell of the reconstructed surface, however, the precise atomic configuration of this system is still a matter of controversy. Consequently, the aim of our present theoretical study is to examine the atomic structure of stable p(3 × 2)/Na/Ge(0 0 1) surfaces with and without the possible change of the number of Ge atoms in the surface layer (so-called mass transport). Structural and electronic properties of the considered system are investigated using the local-orbital density functional method. Our considerations are completed by a simulation of STM images of the structures following from molecular dynamics calculations.  相似文献   

15.
We have used scanning tunneling microscopy and low-energy electron microscopy to measure the thermal decay of two-dimensional Cu, Pb-overlayer, and Pb-Cu alloy islands on Pb-Cu(1 1 1) surface alloys. Decay rates covering 6-7 orders of magnitude are accessible by applying the two techniques to the same system. We find that Cu adatom diffusion across the surface alloy is rate-limiting for the decay of both Pb and Pb-Cu islands on the surface alloy and that this rate decreases monotonically with increasing Pb concentration in the alloy. The decrease is attributed to repulsive interactions between Cu adatoms and embedded Pb atoms in the surface alloy. The measured temperature dependences of island decay rates are consistent with first-principles calculations of the Cu binding and diffusion energies related to this “site-blocking” effect.  相似文献   

16.
From an interplay between scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, a comprehensive picture is obtained for oxygen adsorption on the Pt(110)-(1×2) surface, from single isolated oxygen atoms chemisorbed in FCC sites along the platinum ridges to the formation of a new high-coverage oxide-like structure with a local coverage of two oxygen atoms per platinum surface atom. We find that the repulsive O–O interactions for the O/Pt(110) system are compensated by an effective O–O attractive interaction originating from a strong coupling between oxygen adsorption and platinum lattice distortions.  相似文献   

17.
Phosphine and tertiarybutylphosphine adsorption on the indium-rich InP (0 0 1)-(2 × 4) surface at 25 °C have been studied by internal reflection infrared spectroscopy, X-ray photoelectron spectroscopy, and low energy electron diffraction. Both molecules form a dative bond to the empty dangling bonds on the In-P heterodimers and the second-layer In-In dimers and vibrate symmetrically at 2319 (2315) and 2285 (2281) cm−1 and asymmetrically at 2339 (2339) and 2327 (2323) cm−1. A fraction of these species dissociate into adsorbed PH2 with the hydrogen and tertiarybutyl ligands transferring to nearby phosphorus sites. The calculated energy barriers for desorption (<11 kcal/mol) of these molecules is less than that for dissociation (>17 kcal/mol) and explains their low sticking probabilities at elevated temperatures under InP growth conditions.  相似文献   

18.
Density functional theory calculations have been performed on the adsorption of H and CH3, and the dissociation of CH4 on Pt(1 0 0) surface. It was found that H was adsorbed on the top and bridge sites, while CH3 was adsorbed only on the top site. The coadsorption of methyl and hydrogen which has also been investigated shows that the interaction between the two adsorbates is stabilising. In addition, two distinct pathways were explored, differing by the initial adsorbed state of CH4. They converge readily to the same transition state corresponding to an activation energy value of 0.53 eV. These results compare favourably with existing data in the literature for Pt(1 1 1) and Pt(1 1 0).  相似文献   

19.
Current imaging tunneling spectroscopy (CITS) carried out in UHV at room temperature was used to study the electronic structure of the Au(1 1 1) surface in the range of −1.0-1.0 eV. The CITS experiment showed the existence of the Shockley surface state (SS) located in range 0.3-0.7 eV below the Fermi level. A wide range of SS locations is explained by the influence of the electronic structure of the tip on the measurement of the tunneling current. This hypothesis is supported by a simple theoretical model. Finally, a new method of CITS analysis is suggested. The method is related to counting local maxima locations on each tunneling spectroscopy curve and building a histogram. This method of data analysis allows finding statistically the most frequently appearing maxima. Using the histogram method the location of the SS is estimated to 0.47 eV below the Fermi level.  相似文献   

20.
The dissociative adsorption of ethylene (C2H4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges.DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces.The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms.Finally a high surface area NiAg alloy catalyst supported on MgAl2O4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号