首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust and simple approach for microfabricated chip based liquid-liquid extraction was developed for on-chip sample pretreatment. The chip based extraction system was composed of two microfabricated glass plates with a microporous membrane sandwiched in between. A simple bonding approach using epoxy was used to achieve bonding and sealing of the L-L extraction chip. Gravity was employed to drive the aqueous and organic flows through separate channels in the extraction system, separated by the membrane. During extraction, the analyte in an aqueous sample stream was transferred through the membrane into the organic stream. The fluorescence intensity of the analyte extracted into the organic stream was monitored in situ by a laser induced fluorescence detection system. The performance of the system was demonstrated using an aqueous solution of butyl rhodamine B (BRB) and isobutanol as sample and extractant, respectively. The system proved to be an efficient means for achieving chip based microporous membrane liquid-liquid extraction. The precision of fluorescence measurements was 1.5% R.S.D. (n = 4). A linear response range of 1 × 10−7 to 1 × 10−4 M BRB was obtained with a regression equation: I = 8.00 × 106 C + 4.91. An enrichment factor of ca. 3 was obtained with an extraction efficiency of 69%.  相似文献   

2.
A rapid and effective preconcentration method for extraction of rhodamine 6G was developed by using a dispersive liquid-liquid microextraction (DLLME) prior to UV-vis spectrophotometry. In this extraction method, a suitable mixture of acetone (disperser solvent) and chloroform (extractant solvent) was injected rapidly into a conical test tube containing aqueous solution of rhodamine 6G. Therefore, a cloudy solution was formed. After centrifugation of the cloudy solution, sedimented phase was evaporated, reconstituted with methanol and measured by UV-vis spectrophotometry. Different operating variables such as type and volume of extractant solvent, type and volume of disperser solvent, pH of the sample solution, salt concentration and extraction time were investigated. The optimized conditions (extractant solvent: 300 μL of chloroform, disperser solvent: 3 mL of acetone, pH: 8 and without salt addition) resulted in a linear calibration graph in the range of 5-900 ng mL−1 of rhodamine 6G in initial solution with R2 = 0.9988 (n = 5). The Limits of detection and quantification were 2.39 and 7.97 ng mL−1, respectively. The relative standard deviation for 50 and 250 ng mL−1 of rhodamine 6G in water were 2.88% and 1.47% (n = 5), respectively. Finally, the DLLME method was applied for determination of rhodamine 6G in different industrial waste waters.  相似文献   

3.
Sun M  Du WB  Fang Q 《Talanta》2006,70(2):392-396
In this work, a miniaturized liquid-liquid extraction system under stopped-flow manipulation mode with spectrometric detection was developed. A Teflon AF liquid-core waveguide (LCW) capillary was used to serve as both extraction channel for organic solvent flow and adsorption detection flow cell. Gravity induced hydrostatic pressure was used to drive the organic and aqueous phases through the extraction channels. During extraction process, a stable organic and aqueous phase interface was formed at the outlet of the capillary, through which the analyte in the flowing aqueous stream was extracted into the stationary organic solvent in capillary. The absorbance of the analyte extracted into the organic solvent was measured in situ by a spectrometric detection system with light emitting diode (LED) as light source and photodiode as absorbance detector. The performance of the system was demonstrated in the determination of sodium dodecyl sulfate (SDS) extracted as an ion pair with methylene blue into chloroform. The precision of the measured absorbance for a 5 mg L−1 SDS standard was 6.1% R.S.D. (n = 5). A linear response range of 1-10 mg L−1 SDS was obtained with 5 min extraction period. The limit of detection (LOD) for SDS based on three times standard deviation of the blank response was 0.25 mg L−1.  相似文献   

4.
Kang CY  Xi DL  Zhou SM  Jiang ZL 《Talanta》2006,68(3):974-978
In Na2HPO4-citric acid buffer solution, Cl2 can oxidize I to form I2 and then it reacts with excess I to form I3. The I3 combines respectively with rhodamine dyes, including rhodamine B (RhB), butyl rhodamine B (b-RhB), rhodamine 6G (RhG) and rhodamine S (RhS), to form association particles which give stronger resonance scattering (RS) effect at 400 nm. The RS intensity of the RhB, b-RhB, RhG and RhS systems is proportional to chlorine concentrations in the range of 0.008-1.74, 0.019-1.33, 0.021-2.11 and 0.019-2.04 μg/mL Cl2, respectively. The detection limits of the systems were 0.0020, 0.0048, 0.0063 and 0.0017 μg/mL, respectively. In them, the RhB system has good stability and high sensitivity, and has been applied to the analysis of chlorine in drinking water, with satisfactory results which is in agreement with that of the methyl orange (MO) spectrophotometry.  相似文献   

5.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

6.
Liang AH  Zhou SM  Jiang ZL 《Talanta》2006,70(2):444-448
Based on resonance scattering (RS) effect of rhodamine dye association particles, a new resonance scattering method for the determination of hydroxyl free radical from Fenton reaction was developed. In HCl-NaAc buffer solution, the OH of Fenton reaction oxidized the excess I to I3. The I3 combined, respectively, with rhodamine B (RhB), butyl rhodamine B (b-RhB), rhodamine 6G (RhG) and rhodamine S (RhS) to form association particles that exhibit stronger resonance scattering effect at 420 nm and 610 nm. However, the RS peak at about 610 nm was interfered with its synchronous fluorescence peak at 580 nm for RhB, 580 nm for b-RhB, 560 nm for RhG and 560 nm for RhS, respectively. The concentration of H2O2 in the range of 0.648-21.6 μmol/L, 0.423-13.0 μmol/L, 0.216-13.0 μmol/L and 0.092-13.0 μmol/L was linear to its resonance scattering intensity at 420 nm. Its detection limit was 0.15 μmol/L, 0.10 μmol/L, 0.092 μmol/L and 0.044 μmol/L, H2O2, respectively. This RhS RS method was applied to selection of the antioxidant, with satisfactory results.  相似文献   

7.
Jiang ZL  Zhang BM  Liang AH 《Talanta》2005,66(3):783-788
A new simple, selective and sensitive method for the determination of trace chlorine dioxide in water has been developed, based on the oxidation by chlorine dioxide to reduction the fluorescence of rhodamine dyes in ammonia-ammonium chloride buffer solution. Four rhodamine dyes systems such as rhodamine S, rhodamine G, rhodamine B and butyl-rhodamine B were tested. The rhodamine S system is the best, with a linear range of 0.0060-0.450 μg mL−1 and a detection limit of 0.0030 μg mL−1 ClO2. It was applied to the determination of chlorine dioxide in synthetic samples and real samples, with satisfactory results. This method has good selectivity, especially, other chlorine species such as chlorine, hypochlorite, chlorite and chlorate do not interfere the determination. The mechanism of fluorescence reduction was also considered.  相似文献   

8.
A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML2). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5 × 10−2 mol L−1, extraction temperature 40 °C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 μL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 μL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 μg L−1, relative standard deviation (RSD) 5.5% and the working linear range 2-30 μg L−1.  相似文献   

9.
A new micelle-mediated cloud point extraction method is described for sensitive and selective determination of trace amounts of rhodamine B by spectrophotometry. The method is based on the cloud point extraction of rhodamine B from aqueous solution using Triton X-100 in acidic media. The extracted surfactant rich phase is diluted with water and its absorbance is measured at 563 nm by a spectophotometer. The effects of different operating parameters such as concentration of surfactant and salt, temperature and pH on the cloud point extraction of rhodamine B were studied in details and a set of optimum conditions were obtained. Under optimum conditions a linear calibration graph in the range of 5-550 ng mL−1 of rhodamine B in the initial solution with r = 0.9991 (n = 15) was obtained. Detection limit based on three times the standard deviation of the blank (3Sb) was 1.3 ng mL−1 (n = 10) and the relative standard deviation (R.S.D.) for 50 and 350 ng mL−1 of rhodamine B was 2.40 and 0.87% (n = 10), respectively. The method was applied for the determination of rhodamine B in soft pastel, hand washing liquid soap, matches tip and textile dyes mixture samples.  相似文献   

10.
The absorbance characteristics and influential factors on these characteristics for a liquid-phase gas sensor, which is based on gas–permeable liquid core waveguides (LCWs), are studied from theoretical and experimental viewpoints in this paper. According to theory, it is predicted that absorbance is proportional to the analyte concentration, sampling time, analyte diffusion coefficient, and geometric factor of this device when the depletion layer of the analyte is ignored. The experimental results are in agreement with the theoretical hypothesis. According to the experimental results, absorbance is time-dependent and increasing linearly over time after the requisite response time with a linear correlation coefficient r2 > 0.999. In the linear region, the rate of absorbance change (RAC) indicates improved linearity with sample concentration and a relative higher sensitivity than instantaneous absorbance does. By using a core liquid that is more affinitive to the analyte, reducing wall thickness and the inner diameter of the tubing, or increasing sample flow rate limitedly, the response time can be decreased and the sensitivity can be increased. However, increasing the LCW length can only enhance sensitivity and has no effect on response time. For liquid phase detection, there is a maximum flow rate, and the absorbance will decrease beyond the stated limit. Under experimental conditions, hexane as the LCW core solvent, a tubing wall thickness of 0.1 mm, a length of 10 cm, and a flow rate of 12 mL min−1, the detection results for the aqueous benzene sample demonstrate a response time of 4 min. Additionally, the standard curve for the RAC versus concentration is RAC = 0.0267 c + 0.0351 (AU min−1), with r2 = 0.9922 within concentrations of 0.5–3.0 mg L−1. The relative error for 0.5 mg L−1 benzene (n = 6) is 7.4 ± 3.7%, and the LOD is 0.04 mg L−1. This research can provide theoretical and practical guides for liquid–phase gas sensor design and development based on a gas-permeable Teflon AF 2400 LCW.  相似文献   

11.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

12.
A sequential injection lab-on-valve (LOV) unit, integrating a miniaturized electrochemical flow cell (EFC), has been constructed for the determination of trace amounts of Se (IV) by employing cathodic stripping voltammetry (CSV) technique. The procedure is carried out on a mercury film coated glassy carbon electrode. The analyte solution and electrolyte solution were continuously aspirated and merged in the holding coil (HC) by using a single syringe pump, which were afterwards pushed into the EFC, where the peak current was generated during the subsequent deposition/stripping procedure and measured as the basis of quantification. Assay parameters were optimized in order to achieve the best analytical performance, including mercury film preparation, supporting electrolyte composition, deposition potential and deposition time, and flow variables in the LOV. By loading a sample volume of 500 μL, a linear calibration graph was derived within 1-600 μg L−1, and a detection limit (3б) of 0.11 μg L−1 was achieved along with a sampling frequency of 20 h−1. By integrating the EFC into the LOV unit, the assembling system not only minimized the sample/reagent consumption and waste generation, but also enhanced the sampling frequency. The work itself extended the applications of electrochemical detection techniques and provided a good platform for Se (IV) electrochemical analysis.  相似文献   

13.
The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l−1 and cerium sulfate was 1.6 mmol l−1 in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l−1 sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm.  相似文献   

14.
Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS.Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L−1 with detection limit of 0.6 ng L−1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L−1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L−1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

15.
Xiang Y  Mei L  Li N  Tong A 《Analytica chimica acta》2007,581(1):132-136
A new fluorogenic method for the selective and sensitive determination of chromium(VI) in acidic water using rhodamine B hydrazide was developed. This method was based on the oxidation of non-fluorescent rhodamine B hydrazide by potassium dichromate in acidic aqueous conditions to give rhodamine B, which was highly fluorescent, as a product. With the optimum condition described, the fluorescence enhancement at 585 nm was linearly related to the concentration of chromium(VI) in the range of 5.0 × 10−8 to 2.0 × 10−6 mol L−1 (2.60-104 ng mL−1) with a correlation coefficient of R2 = 0.9993 (n = 18) and a detection limit of 5.5 × 10−9 mol L−1 (0.29 ng mL−1). The R.S.D. was 2.2% (n = 5). The proposed method was also applied to the determination of chromium(VI) in drinking water, river water and synthetic samples.  相似文献   

16.
A method based on micro-porous membrane liquid-liquid extraction (MMLLE) enrichment and nonaqueous capillary electrophoresis (CE) separation, was established for the analysis of sulfonylurea herbicides in water samples. After MMLLE, the analyte trapped in the chloroform was treated mildly with nitrogen flow to dryness and then dissolved in 200 μl of 4 mM Tris methanol solution for CE analysis. Five sulfonylurea herbicides were separated by nonaqueous CE with Tris/acetate of methanol solution as the run buffer. MMLLE related parameters such as organic solvent used as acceptor, sample flow rate, sample pH, enrichment time, and salt effect were investigated with tribenuron methyl (TBM) as a model compound. Results showed that with a sample flow rate of 3.0 ml min−1 and an enrichment time of 20 min, the proposed method has good linear relationship over the scope of 1-15 ng ml−1 with related coefficient of R2=0.9911, and a detection limit of 0.4 ng ml−1. This method was applied to determine TBM in realworld water samples with recoveries over the range of 89-97%.  相似文献   

17.
A novel Fe3O4–poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L−1 with R2 = 0.9991 was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.10 μg L−1 and 0.35 μg L−1 (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L−1 of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%.  相似文献   

18.
An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium pyrrolidinedithiocarbamate (APDC) in citrate buffer and the chelate is extracted into isobutyl methyl ketone (IBMK), which is separated from the aqueous phase by means of a newly designed dual-conical gravitational phase separator. A metered amount of the organic eluate is aspirated and stored in the PTFE holding coil (HC) of the SI-system. Afterwards, it is dispensed and mixed with an aqueous back extractant of dilute nitric acid containing Hg(II) ions as stripping agent, thereby facilitating a rapid metal-exchange reaction with the APDC ligand and transfer of the Cd into the aqueous phase. The aqueous phase is separated in a second dual-conical gravitational phase separator, and 30 μl of it is entrapped and metered in a sample loop (SL) and subsequently introduced via air segmentation into the graphite tube for analyte quantification. The ETAAS determination is performed in parallel with the separation/preconcentration process of the ensuing sample. An enrichment factor of 21.4, a detection limit of 2.7 ng l−1, along with a sampling frequency of 13 h−1 were obtained at a sample flow rate of 6.0 ml min−1. The precision (R.S.D.) at the 0.4 μg l−1 level was 1.8% as compared to 3.2% when quantifying the organic extractant directly. The applicability of the procedure is demonstrated for the determination of trace levels of cadmium in three certified reference materials.  相似文献   

19.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

20.
Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml−1 and the limit of detection was 0.56 ng ml−1. The proposed method was applied to the determination of silver in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号