首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The oxidation of the Pd(1 1 1) surface was studied by in situ XPS during heating and cooling in 3 × 10−3 mbar O2. A number of adsorbed/dissolved oxygen species were identified by in situ XPS, such as the two dimensional surface oxide (Pd5O4), the supersaturated Oads layer, dissolved oxygen and the R 12.2° surface structure.Exposure of the Pd(1 1 1) single crystal to 3 × 10−3 mbar O2 at 425 K led to formation of the 2D oxide phase, which was in equilibrium with a supersaturated Oads layer. The supersaturated Oads layer was characterized by the O 1s core level peak at 530.37 eV. The 2D oxide, Pd5O4, was characterized by two O 1s components at 528.92 eV and 529.52 eV and by two oxygen-induced Pd 3d5/2 components at 335.5 eV and 336.24 eV. During heating in 3 × 10−3 mbar O2 the supersaturated Oads layer disappeared whereas the fraction of the surface covered with the 2D oxide grew. The surface was completely covered with the 2D oxide between 600 K and 655 K. Depth profiling by photon energy variation confirmed the surface nature of the 2D oxide. The 2D oxide decomposed completely above 717 K. Diffusion of oxygen in the palladium bulk occurred at these temperatures. A substantial oxygen signal assigned to the dissolved species was detected even at 923 K. The dissolved oxygen was characterised by the O 1s core level peak at 528.98 eV. The “bulk” nature of the dissolved oxygen species was verified by depth profiling.During cooling in 3 × 10−3 mbar O2, the oxidised Pd2+ species appeared at 788 K whereas the 2D oxide decomposed at 717 K during heating. The surface oxidised states exhibited an inverse hysteresis. The oxidised palladium state observed during cooling was assigned to a new oxide phase, probably the R 12.2° structure.  相似文献   

2.
We have investigated the oxidation behavior of Pd nanoparticles grown epitaxially on MgO(1 0 0) single crystal substrates. We find that the interaction of oxygen with octahedral Pd nanoparticles at 500 K can be subdivided in three stages: above 10−6 mbar O2 pressure, the particles start to flatten; above 10−3 mbar, the particles begin to shrink laterally and to be less truncated at the corners. The formation of epitaxial bulk PdO sets in at oxygen pressures above 0.1 mbar, which is accompanied by a continuous shrinkage of the Pd particles. Our results point to a novel nanoparticle oxidation mechanism: the Pd particles act as dissociation centers for O2 and serve at the same time as source for Pd atoms resulting in epitaxial PdO growth on MgO(1 0 0).  相似文献   

3.
Adsorption of NO and the reaction between NO and H2 were investigated on the Ru(0 0 0 1) surface by X-ray photoelectron spectroscopy (XPS). Surface composition was measured after NO adsorption and after the selective catalytic reduction of nitric oxide with hydrogen in steady-state conditions at 320 K and 390 K in a 30:1 mixture of H2 and NO (total pressure = 10−4 mbar). After steady-state NO reduction, molecularly adsorbed NO in both the linear on-top and threefold coordinations, NHads and Nads species were identified by XPS. The coverage of the NHads and Nads species was higher after the reaction at 390 K than the corresponding values at 320 K. Strong destabilisation of Nads by Oads was detected. A possible reaction mechanism is discussed.  相似文献   

4.
Jinyi Han 《Surface science》2006,600(13):2752-2761
The interaction of O2 with Pd(1 1 1), Pd(1 1 0) and Pd(1 0 0) was studied in the pressure range 1-150 Torr by the techniques of temperature programmed decomposition (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The oxidation of Pd was rate-determined by oxygen diffusion into Pd metal followed by the diffusion into PdO once the bulk oxide layer was formed. The dissolution of oxygen atoms into Pd metal followed the Mott-Cabrera model with diffusion coefficient 10−16 cm2 s−1 at 600 K and activation energy of 60-85 kJ mol−1. The bulk oxide phase was formed when a critical oxygen concentration was reached in the near-surface region. The formation of PdO was characterized by a decrease in the oxygen uptake rate, the complete fading of the metallic Pd LEED pattern and an atomic ratio O/Pd of 0.15-0.7 as measured by AES. The diffusion of oxygen through the bulk oxide layer again conformed to the Mott-Cabrera parabolic diffusion law with diffusion coefficient 10−18 cm2 s−1 at 600 K and activation energy of 111-116 kJ mol−1. The values for the diffusion coefficient and apparent activation energy increased as the surface atom density of the single crystals increased.  相似文献   

5.
J. Wang  E.I. Altman 《Surface science》2007,601(16):3497-3505
The oxidation of Pd(1 0 0) by an oxygen plasma was characterized using X-ray photoelectron spectroscopy (XPS), low energy ion scattering spectroscopy (ISS), temperature programmed desorption (TPD), and low energy electron diffraction (LEED). The oxygen uptake followed a typical parabolic profile with oxygen coverages reaching 32 ML after 1 h in the plasma; a factor of 40 higher than could be achieved by dosing molecular oxidants in ultra high vacuum. Even after adsorbing 32 ML of oxygen, XPS revealed both metallic Pd and PdO in the surface region. The R27o LEED pattern previously attributed to a surface oxide monolayer, slowly attenuated with oxygen coverage indicating that the PdO formed poorly ordered three dimensional clusters that slowly covered the ordered surface oxide. While XPS revealed the formation of bulk PdO, only small changes in the ISS spectra were observed once the surface oxide layer was completed. The leading edges of the O2 TPD curves showed only small shifts with increasing oxygen coverage that could be explained in terms of the lower thermodynamic stability of small oxide clusters. The desorption curves, however, could not be adequately described as simple zero order decomposition of PdO. There has been an ongoing debate in the literature about the relative catalytic activities of PdO and oxygen phases on Pd, the results indicate that any differences in the reactivity between bulk PdO and surface oxides are not associated with differences in the density of exposed Pd atoms or the decomposition kinetics of these two phases.  相似文献   

6.
By means of density functional theory calculations we have investigated the role of adsorbed atomic oxygen and adsorbed OH in the oxidation of ammonia on Pt{1 1 1}. We have investigated the dissociation of NH3,ads, NH2,ads and NHads on Pt{1 1 1} and the oxidation of these species by Oads and OHads. We have done normal mode frequency analysis and work function calculations to characterise reactant, product and transition states. We have determined reaction energies, activation entropies, kinetic parameters and corrected total energies with the zero point energy. We have shown that Oads only activates the dehydrogenation of NH3,ads and that OHads activates the dehydrogenation of all NHx,ads species and have reasoned this difference in activation by a bond order conservation principle. We have pointed out the importance of a zero point energy correction to the reaction energies and barriers. We have compared the calculated vibrational modes of the adsorbates with corresponding experimental EELS data. This has led to a revise of the frequency assignment of ν(Pt-OH2), a revise in the identification of a NH2 species on the Pt{1 1 1} surface after electron bombardment of pre-adsorbed NH3 and the confirmation of an ammonia dimer binding model at the expense of a hollow site occupation by ammonia on the Pt{1 1 1} surface.  相似文献   

7.
We have investigated the interaction of molecular oxygen with the Ag(1 0 0) surface in a temperature range from 130 K to 470 K and an oxygen partial pressure ranging up to 10 mbar by scanning tunneling microscopy, low electron energy diffraction, Auger electron spectroscopy and ab initio density functional calculations. We find that at 130 K, following oxygen exposures of 6000 Langmuirs O2, the individual oxygen atoms are randomly distributed on the surface. When the sample is exposed to 10 mbar O2 at room temperature, small, p(2 × 2) reconstructed patches are formed on the surface. After oxidation at ≈470 K and 10 mbar O2 pressure the surface undergoes a c(4 × 6) reconstruction coexisting with a (6 × 6) superstructure. By ab initio thermodynamic calculations it is shown that the c(4 × 6) reconstruction is an oxygen adsorption induced superstructure which is thermodynamically stable for an intermediate range of oxygen chemical potential.  相似文献   

8.
We investigated the kinetics governing the transition from surface (2D) to bulk (3D) oxide growth on Pt(1 0 0) in ultrahigh vacuum as a function of the surface temperature and the incident flux of an oxygen atom beam. For the incident fluxes examined, the bulk oxide formation rate increases linearly with incident flux (ΦO) as the oxygen coverage increases to about 1.7 ML (monolayer) and depends only weakly on the surface temperature in the limit of low surface temperature (TS < 475 K). In contrast, in the high temperature limit (TS > 525 K), the bulk oxide formation rate increases with for oxygen coverages as high as 1.6 ML, and decreases with increasing surface temperature. We show that the measured kinetics is quantitatively reproduced by a model which assumes that O atoms adsorb on top of the 2D oxide, and that this species acts as a precursor that can either associatively desorb or react with the 2D oxide to form a 3D oxide particle. According to the model, the observed change in the flux and surface temperature dependence of the oxidation rate is due to a change in the rate-controlling steps for bulk oxide formation from reaction at low temperature to precursor desorption at high temperature. From analysis of flux-dependent uptake data, we estimate that the formation rate of a bulk oxide nucleus has a fourth-order dependence on the precursor coverage, which implies a critical configuration for oxide nucleus formation requiring four precursor O atoms. Considering the similarities in the development of surface oxides on various transition metals, the precursor-mediated transition to bulk oxide growth reported here may be a general feature in the oxidation of late transition metal surfaces.  相似文献   

9.
Growth and decomposition of the Pd5O4 surface oxide on Pd(1 1 1) were studied at sample temperatures between 573 and 683 K and O2 gas pressures between 10−7 and 6 × 10−5 mbar, by means of an effusive O2 beam from a capillary array doser, scanning tunnelling microscopy (STM) and thermal desorption spectrometry (TDS). Exposures beyond the p(2 × 2)O adlayer (saturation coverage 0.25) at 683 K (near thermodynamic equilibrium with respect to Pd5O4 surface oxide formation) lead to incorporation of additional oxygen into the surface. To initiate the incorporation, a critical pressure beyond the thermodynamic stability limit of the surface oxide is required. This thermodynamic stability limit is near 8.9 × 10−6 mbar at 683 K, in good agreement with calculations by density functional theory. A controlled kinetic study was feasible by generating nuclei by only a short O2 pressure pulse and then following further growth kinetics in the lower (10−6 mbar) pressure range.Growth of the surface oxide layer at a lower temperature (573 K) studied by STM is characterized by a high degree of heterogeneity. Among various metastable local structures, a seam of disordered oxide formed at the step edges is a common structural feature characteristic of initial oxide growth. Further oxide nucleation appears to be favoured along the interface between the p(2 × 2)O structure and these disordered seams. Among the intermediate phases one specifically stable phase was detected both during growth and decomposition of the Pd5O4 layer. It is hexagonal with a distance of about 0.62 nm between the protrusions. Its well-ordered form is a superstructure.Isothermal decay of the Pd5O4 oxide layer at 693 K involves at first a rearrangement into the structure, indicating its high-temperature stability. This structure can break up into small clusters of uniform size and leaves a free metal surface area covered by a p(2 × 2)O adlayer. The rate of desorption increases autocatalytically with increasing phase boundary metal-oxide. We propose that at close-to-equilibrium conditions (693 K) surface oxide growth and decay occur via this intermediate structure.  相似文献   

10.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

11.
Jinyi Han 《Surface science》2006,600(13):2730-2744
The interaction of O2 with Pd single crystals including Pd(1 1 1), Pd(1 1 0) and Pd(1 0 0) in the pressure range 1-150 Torr was studied using scanning tunneling microscopy (STM). The Pd single crystal surface morphologies were determined by the oxidation conditions: O2 pressure, exposure time and treatment temperature. Oxygen dissolution into Pd metal followed by the formation of bulk oxide was observed. The dissolution of oxygen resulted in the increase of the inter-planar spacing between the first two layers, 9-14% increase after an exposure of Pd(1 1 1) to 10-25 Torr O2 at 600 K for 10 min, and 10-20% increase after exposing Pd(1 1 0) and Pd(1 0 0) to 1 Torr O2 at 600 K for 10 min. Elongated or semi-spherical oxide agglomerates along the steps nucleated and grew on both Pd(1 1 0) and Pd(1 0 0) surfaces after oxidation in 5-25 Torr O2 at 600 K. When bulk PdO was formed, the single crystal surface was covered with semi-spherical agglomerates 2-4 nm in size, which tended to aggregate to form a “cauliflower-like” structure. The single crystal surface area also increased during oxidation.  相似文献   

12.
STM, STS, LEED and XPS data for crystalline θ-Al2O3 and non-crystalline Al2O3 ultra-thin films grown on NiAl(0 0 1) at 1025 K and exposed to water vapour at low pressure (1 × 10−7-1 × 10−5 mbar) and room temperature are reported. Water dissociation is observed at low pressure. This reactivity is assigned to the presence of a high density of coordinatively unsaturated cationic sites at the surface of the oxide film. The hydroxyl/hydroxide groups cannot be directly identify by their XPS binding energy, which is interpreted as resulting from the high BE positions of the oxide anions (O1s signal at 532.5-532.8 eV). However the XPS intensities give evidence of an uptake of oxygen accompanied by an increase of the surface coverage by Al3+ cations, and a decrease of the concentration in metallic Al at the alloy interface. A value of ∼2 for the oxygen to aluminium ions surface concentration ratio indicates the formation of an oxy-hydroxide (AlOxOHy with x + y ∼ 2) hydroxylation product. STM and LEED show the amorphisation and roughening of the oxide film. At P(H2O) = 1 × 10−7 mbar, only the surface of the oxide film is modified, with formation of nodules of ∼2 nm lateral size covering homogeneously the surface. STS shows that essentially the valence band is modified with an increase of the density of states at the band edge. With increasing pressure, hydroxylation is amplified, leading to an increased coverage of the alloy by oxy-hydroxide products and to the formation of larger nodules (∼7 nm) of amorphous oxy-hydroxide. Roughening and loss of the nanostructure indicate a propagation of the reaction that modifies the bulk structure of the oxide film. Amorphisation can be reverted to crystallization by annealing under UHV at 1025 K when the surface of the oxide film has been modified, but not when the bulk structure has been modified.  相似文献   

13.
The chemical behaviour of 3-hexyne on oxygen modified Ru(0 0 1) surfaces has been analysed under ultrahigh-vacuum, using reflection-absorption infrared spectroscopy (RAIRS). The effects of oxygen coverage, 3-hexyne exposure and adsorption temperature were studied. Two modified Ru(0 0 1) surfaces were prepared: Ru(0 0 1)-(2 × 2)-O and Ru(0 0 1)-(2 × 1)-O that correspond to oxygen coverages (θO) of 0.25 and 0.5 ML, respectively. The striking result is the direct bonding to an O atom when the modified surfaces are exposed to a very low dose (0.2 L) of 3-hexyne at low temperature (100 K). For θO = 0.25 ML, an unsaturated oxametallacycle [Ru-O-C(C2H5)C(C2H5)-Ru] is proposed, identified by RAIRS for the first time, through the νCC and νCO modes. Further decomposition at 110 K yields smaller oxygenated intermediates, such as acetyl [μ32(C,O)-CH3CO], co-adsorbed with a small amount of carbon monoxide and non-dissociated species. The temperature at which a fraction of molecules undergoes complete C-C and C-H bond breaking is thus much lower than on clean Ru(0 0 1). The ultimate decomposition product observed by RAIRS at 220 K is methylidyne [CH]. Another key observation was that the adsorption temperature is not determinant of the reaction route, contrarily to what occurs on clean Ru(0 0 1): even when 3- hexyne strikes the surface at a rather high temperature (220 K), the multiple bond does not break completely. For θO = 0.5 ML, a saturated oxametallacycle [Ru-O-CH(C2H5)-CH(C2H5)-Ru] is also proposed at 100 K, identified by the νasO-C-C (at 1043 cm−1) and νsO-C-C (at 897 cm−1) modes, showing that some decomposition with C-H bond breaking occurs. For this oxygen coverage, the reaction temperatures are lower, and the intermediate surface species are less stable.  相似文献   

14.
Jakub Drnec 《Surface science》2009,603(13):2005-2014
The adsorption of Cs on Pt(1 1 1) surfaces and its reactivity toward oxygen and iodine for coverages θCs?0.15 is reported. These surfaces show unusual “anomalous” behavior compared to higher coverage surfaces. Similar behavior of K on Pt(1 1 1) was previously suggested to involve incorporation of K into the Pt lattice. Despite the larger size of Cs, similar behavior is reported here. Anomalous adsorption is found for coverages lower than 0.15 ML, at which point there is a change in the slope of the work function. Thermal Desorption Spectroscopy (TDS) shows a high-temperature Cs peak at 1135 K, which involves desorption of Cs+ from the surface.The anomalous Cs surfaces and their coadsorption with oxygen and iodine are characterized by Auger Electron Spectroscopy (AES), TDS and Low Electron Energy Diffraction (LEED). Iodine adsorption to saturation on Pt(1 1 1)(anom)-Cs give rise to a sharp LEED pattern and a distinctive work function increase. Adsorbed iodine interacts strongly with the Cs and weakens the Cs-Pt bond, leading to desorption of CsxIy clusters at 560 K. Anomalous Cs increases the oxygen coverage over the coverage of 0.25 ML found on clean Pt. However, the Cs-Pt bond is not significantly affected by coadsorbed oxygen, and when oxygen is desorbed the anomalous cesium remains on the surface.  相似文献   

15.
Oxygen adsorption on Mo2C(0 0 0 1) has been investigated with angle-resolved photoemission spectroscopy (ARPES). When the surface is reacted with O2, the O 2p-induced states are formed at 4.1 and 5.3 eV at the point. The emissions around the Fermi level are also intensified by oxygen adsorption, which is due to the formation of a partially filled state. It is found that the reactivity of the surface toward H2O adsorption is much enhanced by pre-adsorption of oxygen. The reactivity is found to be maximized at θO ∼ 0.2.  相似文献   

16.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

17.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

18.
We have studied the influence of oxygen pressure during the cyclic annealing used for the cleaning of W(1 1 0) surfaces. For this purpose the surface morphology and electronic properties are measured by means of scanning tunneling microscopy (STM) and spectroscopy (STS), respectively. It is found that the surfaces with impurity atom densities as low as 2 × 10−3 can be obtained by gradually reducing the oxygen pressure between subsequent annealing cycles down to about 2 × 10−8 mbar in the final cycle. Only on the clean surface a bias-dependent spatial modulation of the local density of states (LDOS) is observed at step edges and around impurity sites by STS. In addition, we find a pronounced peak in the occupied states. In combination with density functional theory calculations these features can be traced back to a dispersive pz-dxz-type surface resonance band and the lower band edge of a surface state, respectively.  相似文献   

19.
The initial stages of oxidation of the In-rich InAs(0 0 1)-(4 × 2)/c(8 × 2) surface by molecular oxygen (O2) were studied using scanning tunneling microscopy (STM) and density functional theory (DFT). It was shown that the O2 dissociatively chemisorbs along the rows in the [1 1 0] direction on the InAs surface either by displacing the row-edge As atoms or by inserting between In atoms on the rows. The dissociative chemisorption is consistent with being autocatalytic: there is a high tendency to form oxygen chemisorption sites which grow in length along the rows in the [1 1 0] direction at preexisting oxygen chemisorption sites. The most common site size is about 21-24 Å in length at ∼25% ML coverage, representing 2-3 unit cell lengths in the [1 1 0] direction (the length of ∼5-6 In atoms on the row). The autocatalysis was confirmed by modeling the site distribution as non-Poisson. The autocatalysis and the low sticking probability (∼10−4) of O2 on the InAs(0 0 1)-(4 × 2)/c(8 × 2) are consistent with activated dissociative chemisorption. The results show that is it critical to protect the InAs surface from oxygen during subsequent atomic layer deposition (ALD) or molecular beam epitaxy (MBE) oxide growth since oxygen will displace As atoms.  相似文献   

20.
The (N × 1) reconstruction (N = 5-6) of the clean Pd8Ni92(1 1 0) surface has been investigated by surface X-ray diffraction. A good fit with experimental data collected under UHV conditions is obtained when introducing undulations in the outer dense rows, constituted mainly of Pd atoms which strongly segregate to the surface. This reconstruction can be regarded as a way to relax the strains induced on the bigger Pd surface atoms, at least partially. The modifications of the surface were studied under butadiene then hydrogen as well as during butadiene hydrogenation at elevated pressure at 300 K and the (N × 1) reconstruction was found to be still present. The main changes are observed under pure hydrogen and during butadiene hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号