首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A low energy electron diffraction (LEED) investigation of the structure of the surface of an FeO(0 0 1) thin film grown on Ag(0 0 1) is presented. The results show that this surface has an almost bulk termination structure with a very small rumple on the first layer, which agrees with the structure found in other studies carried out on the (0 0 1) surface of oxides that have rock-salt structure. Evidences that may support a linear behaviour of the topmost layer rumple with the oxide lattice constant are also discussed.  相似文献   

2.
We have studied adsorption of water on the Zr(0 0 0 1) surface at sub-monolayer coverage by means of LEED and photoemission spectroscopy. An ordered (2 × 2) structure is formed after adsorption of 0.6-1.4 Langmuirs at 473 K. The sharpest LEED pattern was observed at an exposure of 1.2 L implying a coverage of 0.5 ML of oxygen. The same exposure at 293 K gives only a weak and diffuse (2 × 2) pattern. In addition, the sharp (2 × 2) pattern obtained at 473 K can be reversibly weakened by cooling to 293 K and subsequently sharpened by heating. For the sharp (2 × 2) structure, valence band spectra indicated dissociation of water and showed a peak composed mainly of O 2p derived states with two components at 6.0 eV and 6.6 eV binding energy. On cooling to 293 K, the O 2p peak became narrower and a new state appeared at 7.9 eV. Two components of the O 1s core level were resolved for the (2 × 2) structure, assigned to oxide and hydroxyl groups. The hydrogen on the surface of Zr(0 0 0 1) resulting from the dissociation of water and from bulk segregation strongly influenced the formation of the (2 × 2) structure of oxygen, and caused a temperature instability of the structure.  相似文献   

3.
Plateaus in water adsorption isotherms on hydroxylated BeO surfaces suggest significant differences between the hydroxylated (1 0 0) and (0 0 1) surface structures and reactivities. Density functional theory structures and energies clarify these differences. Using relaxed surface energies, a Wulff construction yields a prism crystal shape exposing long (1 0 0) sides and much smaller (0 0 1) faces. This is consistent with the BeO prisms observed when beryllium metal is oxidized. A water oxygen atom binds to a single surface beryllium ion in the preferred adsorption geometry on either surface. The water oxygen/beryllium bonding is stronger on the surface with greater beryllium atom exposure, namely the less-stable (0 0 1) surface. Water/beryllium coordination facilitates water dissociation. On the (0 0 1) surface, the dissociation products are a hydroxide bridging two beryllium ions and a metal-coordinated hydride with some surface charge depletion. On the (1 0 0) surface, water dissociates into a hydroxide ligating a Be atom and a proton coordinated to a surface oxygen but the lowest energy water state on the (1 0 0) surface is the undissociated metal-coordinated water. The (1 0 0) fully hydroxylated surface structure has a hydrogen bonding network which facilitates rapid proton shuffling within the network. The corresponding (0 0 1) hydroxylated surface is fairly open and lacks internal hydrogen bonding. This supports previous experimental interpretations of the step in water adsorption isotherms. Further, when the (1 0 0) surface is heated to 1000 K, hydroxides and protons associate and water desorbs. The more open (0 0 1) hydroxylated surface is stable at 1000 K. This is consistent with the experimental disappearance of the isotherm step when heating to 973 K.  相似文献   

4.
First-principles calculations are performed to study the various structures of oxygen (O) adsorbed on InN(0 0 0 1) surfaces. It is found that the formation energy of O on InN(0 0 0 1) decreases with decreasing oxygen coverage. Of all the adsorbate induced surface structures examined, the structure of InN(0 0 0 1)-(2 × 2) as caused by O adsorption at the H3 sites with 0.25 monolayers coverage is most energetically favorable. Meanwhile, nitrogen (N) vacancy can form spontaneously. Oxygen atoms may also substitute N atoms, or accumulate at the voids inside InN film or simply stay on the surface during growth. The oxygen impurity then acts as a potential source for the n-type conductivity of InN as well as the large energy band gap measured.  相似文献   

5.
M. Çakmak  Z. Aydu?an 《Surface science》2007,601(6):1489-1493
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and energetics of substitutional phosphorus (P) on the generic Si(0 0 1)-(1 × 2) surface. For the 0.5 ML coverage of P, we have considered three different substitutional sites: (i) the mixed Si-P dimer structure (i.e., the P-nondiffused case), (ii) P-interdiffused to the second layer Si (i.e., intermixed P-Si bond structure) and (iii) P-interdiffused to the third layer Si. We have found that the mixed Si-P dimer structure is 0.79 eV/dimer energetically more favorable than the P-interdiffused case. However, for the hydrogenation of above cases, we have found that the situation is reversed and the interdiffused case is 0.3 eV/dimer energetically more favorable than the P-nondiffused case. Reductions in the number of P-Si is identified as a contributing factor which determines energetically the stable structures during P on Si(0 0 1).  相似文献   

6.
The adsorption of two very different adsorbates, gold and oxygen, induce the formation of a (3 × 1) surface structure on both W(1 1 2) and Mo(1 1 2). In spite of similar adsorbate unit cells, the surface electronic structure, derived from photoemission, exhibits pronounced differences for the two adsorbates. Indeed, both experiment and simulations indicate substantial changes in electronic structures of (1 × 1) and (3 × 1) gold overlayers supported by highly anisotropic (1 1 2) plane. We speculate that (3 × 1) is a favored periodicity in the atomic rearrangement of the (1 1 2) surfaces of molybdenum and tungsten due in part as a result of the initial state band structure of these surfaces.  相似文献   

7.
Using a combination of scanning tunneling microscopy (STM) and density functional theory calculations, we have studied the adsorption of tetracene on the Cu(1 1 0) (2 × 1)O substrate. At monolayer coverage the adsorbed molecules are in the flat-laying geometry with their long axis along the close-packed [0 0 1] direction of the substrate and a long-range ordered structure on the length scale up to 100 nm has been observed. DFT calculation results indicate a stronger interaction between tetracene molecules and Cu(1 1 0) substrate than Cu(1 1 0) (2 × 1)O substrate. The preferential adsorption sites have also been pointed out on both substrates. The observed wavelike structure is explained by the interdigitation of C-H bonds of adjacent molecules.  相似文献   

8.
The chemisorption and dissociation pathways of NO on the Rh(1 0 0), (1 1 0), and (1 1 1) surfaces are studied by the plane-wave density functional theory (DFT) with CASTEP program. In addition, the electronic and geometrical effects that affect the NO dissociation reactions have been investigated in detail. The calculation results are presented as following: The effective activation energies of the best NO dissociation pathways on the Rh(1 0 0), the Rh(1 1 0), and the Rh(1 1 1) are 0.63, 0.66 and 1.77 eV, respectively. The activity of the Rh planes for NO dissociation is in the order of Rh(1 0 0) ≈ Rh(1 1 0) > Rh(1 1 1). The low dissociation barrier for Rh(1 0 0) and Rh(1 1 0) is associated with the existence of a lying-down NO structure which acts as a precursor for dissociation. By Mulliken population analysis and structure analysis, both electronic and geometrical effects are found to affect the NO dissociation reactions, but the geometrical effect exceed the electronic. The energy decomposition scheme has been used to provide further insight into the NO dissociation reactions. Based on the calculations, the interaction energy between N and O in the transition state on the Rh(1 1 1) is found much larger than that on the Rh(1 0 0) and the Rh(1 1 0). The major differences of should originate from the variation of the bonding competition effect.  相似文献   

9.
Supersonic molecular beam technique combined with high resolution X-ray photoelectron spectroscopy using synchrotron radiation was applied to the study of the dynamics of dissociative adsorption of oxygen on Ru(0 0 0 1) surface in high coverage region. The Ru(0 0 0 1) surface pre-covered with oxygen atoms of 0.5 monolayer, which corresponds to the p(2 × 1)-O structure, was dosed to oxygen molecules with translational energy of 0.5 eV. Oxygen uptake was compared between the cases with and without the beam source heated in order to verify the effects of internal energy of oxygen. We found drastic enhancement in initial sticking probability of oxygen when the beam source was heated to 1400 K. We concluded that the enhancement of sticking probability is mainly caused by molecular vibrational excitation, indicating that dissociation barrier is located in the exit channel on potential energy surface.  相似文献   

10.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

11.
The atomic structure of Cs atoms adsorbed on the Si(0 0 1)(2 × 1) surface has been investigated by coaxial impact collision ion scattering spectroscopy. When 0.5 ML of Cs atoms are adsorbed on Si(0 0 1) at room temperature, it is found that Cs atoms occupy a single absorption site on T3 with a height of 3.18 ± 0.05 Å from the second layer of Si(0 0 1)(2 × 1) surface, and the bond length between Cs and the nearest Si atoms is 3.71 ± 0.05 Å.  相似文献   

12.
The surface structure of BaO(1 1 1) has been determined using STM and computer modelling. The BaO(1 1 1) surface was prepared in thin film form on Pt(1 1 1) and presents a surface with twice the lattice parameter expected for that of the bulk termination, i.e. a (2 × 2) reconstruction. Computer modelling indicates that the bulk termination is unstable, but that the (2 × 2) reconstructed BaO(1 1 1) surface has a low surface energy and is hence a stable surface reconstruction. The (2 × 2) reconstruction consists of small, three-sided pyramids with (1 0 0) oriented sides and either oxygen or barium ions at the apices. Less regular surface reconstructions containing the same pyramids are almost equally stable, indicating that we may also expect less regular regions to appear with a fairly random distribution of these surface species. The simulations further suggest that a regular (4 × 4) reconstruction built up of bigger pyramids is even more energetically favourable, and some evidence is found for such a structure in the STM.  相似文献   

13.
Sub-monolayer and monolayer of lead phthalocyanine deposited on InSb(1 0 0) (4 × 2)/c(8 × 2) surface have been investigated by scanning tunneling microscopy and low energy electron diffraction. Molecules first adsorb on the indium rows of the (4 × 2)/c(8 × 2) structure in the [1 1 0] direction and diffuse at the surface in order to form two-dimensional islands. The molecule-substrate interaction stabilizes the PbPc molecules on the In rows. It weakens the interaction between molecules located in adjacent rows resulting in numerous gliding planes between the molecular chains, in the direction parallel to the rows. At monolayer completion, a long-range one-dimensional order is adopted by the molecules in the [1 1 0] direction.  相似文献   

14.
A series of thin Ni films, with thicknesses between 0.2 ML to 13 ML, were deposited on a Pd(1 0 0) substrate (a = 3.89 Å) at room temperature (RT). The growth morphology was investigated using scanning tunneling microscopy (STM). STM images indicate the existence of three different growth modes as a function of increasing coverage. Up to 6.5 ML, the films grow pseudomorphically, consistent with a face-centered tetragonal (fct) structure. From 6.5 ML to 10.5 ML a new apparent interlayer distance of 1.0 ± 0.1 Å is established. The new structure is accompanied by the appearance of an arrangement of filaments on the top layer surface. These filaments are presumably related to a strain relief mechanism of the fct films. Finally above 10.5 ML the Ni films recover the face-centered cubic (fcc) lattice constants. The filaments evolve, as a function of coverage, to form a net-like structure over the whole surface.  相似文献   

15.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

16.
J. Wang  Y. Liu  M.H. Xie 《Surface science》2006,600(14):169-174
A new reconstruction of √3 × √3-R30° has been observed on a GaN film grown on a 6H-SiC (0 0 0 1)-√3 × √3 surface using RHEED and LEED experimental techniques. The experimental LEED PF shows that the GaN film is Ga-terminated hexagonal. The surface is a mixture of two structures with a single bilayer height difference between them. One is a √3 × √3-R30° reconstruction with Ga-adatoms occupying the T4 sites. Another is a Ga-terminated 1 × 1 with no extra Ga on top. The area ratio of the √3 × √3 part to the 1 × 1 part is slightly larger than 1. The first principle total energy calculations and Tensor-LEED I-V curves simulations further confirm this structure model.  相似文献   

17.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

18.
Pt(1 1 0) is one of the most closely investigated metal surface structures because it displays a variety of “missing-row” reconstructions, which are only marginally stable. The ground state is usually found to have 1 × 2 translational symmetry, but a 1 × 3 form has also been seen. Between 1 × 2 and 1 × 3, a series of disordered structures has been recorded, which shows a slight preference for 1 × 5 periodicity. Under the preparation conditions used in this study, a stable 1 × 5 structure was found for Pt(1 1 0). Investigation by surface X-ray diffraction has led to a complete three-dimensional structure, which closely resembles an alternation of 1 × 2 and 1 × 3 unit cells. Pt(1 1 0) shows an interesting example of two “homometric” structures that are indistinguishable by diffraction, but are distinguishable by virtue of their subsurface relaxation pattern.  相似文献   

19.
S. Murphy  V. Usov  I.V. Shvets 《Surface science》2007,601(23):5576-5584
The morphology of ultrathin Ni films on Mo(1 1 0) and W(1 0 0) has been studied by low-energy electron diffraction and scanning tunneling microscopy. Ni films grow pseudomorphically on Mo(1 1 0) at 300 K for a coverage of 0.15 ML. A (8 × 1) structure is found at 0.4 ML, which develops into a (7 × 1) structure by 0.8 ML. The film undergoes a structural change to fcc Ni(1 1 1) at 6 ML. The growth mode switches from layer-by-layer to Stranski-Krastanov between 4 ML and 6 ML. Annealing at around 850 K results in alloying of submonolayer films with the substrate, while for higher coverages the Ni agglomerates into nanowedge islands. Ni films grow pseudomorphically on W(1 0 0) up to a coverage of around 2 ML at 300 K, above which there is a structural change from bcc to hcp Ni with the epitaxial relationship . This is accompanied by the formation of orthogonal domains of uniaxial strain-relieving dislocations from the third layer of the film. For coverages up to 1 ML the growth proceeds by formation of two-dimensional islands, but shifts to three-dimensional growth by 2 ML with rectangular islands aligned along the 〈0 1 1〉 substrate directions. Annealing at around 550 K results in agglomeration of Ni into larger islands and increasing film roughness.  相似文献   

20.
We have determined the structure of the 4H-SiC(0 0 0 1)-3 × 3 surface after exposure to small amounts of molecular oxygen at room temperature using surface X-ray diffraction. The 3 × 3 reconstruction remains until at least an exposure of 10,000 L, but the diffracted intensities change, indicating structural changes. Comparison of the Patterson maps of the clean and oxidized surface shows that the main changes occur at the Si tetramer on top of the 3 × 3 surface. Atomic positions for several models were fitted to the experimental data. A model in which oxygen atoms are inserted into the Si tetramer gives the best fit to the experimental data. The best-fit atomic positions agree well with those obtained using density functional calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号