首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu SH  Ding WH 《Electrophoresis》2005,26(18):3528-3537
The separation and migration behavior of seven positional and structural neutral alkylnaphthalene derivatives in cyclodextrin-mediated capillary electrophoresis were systematically investigated. The effective separation conditions were to use 10 mM phosphate buffer with negatively charged carboxymethyl-beta-cyclodextrin (CM-beta-CD) at pH 6.0. The guest-host interactions with 1:1 or both 1:1 and 1:2 binding stoichiometries for various derivatives were evaluated by comparing their apparent binding constants. The results reveal that the substituent group(s) attached to the naphthalene ring significantly affected the inclusion stoichiometric behaviors. Alkylnaphthalene derivatives with the substituent(s) at the 1-position(s), such as 1-ethylnaphthalene, 1,4-dimethylnaphthalene, may undergo complexation with one and two CM-beta-CD molecules. The binding constants of these derivatives were consistent with the data obtained by a spectrophotometric method. The thermodynamic parameters were also calculated in order to improve our understanding of the interaction between the neutral alkylnaphthalene derivatives and CM-beta-CD at various temperatures. The positive entropy (deltaS degrees) values of the alkylnaphthalenes with the substituent(s) at the 2-position(s) indicate that the inclusion of the guest molecule into the cavity of CM-beta-CD is favored at all temperatures.  相似文献   

2.
Enantioseparation of 6,6′-dibromo-1,1′-binaphthyl-2,2′-diol (DBBD) by cyclodextrin-modified capillary zone electrophoresis (CD-CZE) was studied using the three native α, β, and γ cyclodextrins, the three hydroxypropylated cyclodextrins (2-hydroxypropyl-α, β, and γ), heptakis-2,6-di-O-methyl-β-CD (DM-β-CD), and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD). First, the acidity constants of DBBD were determined using capillary electrophoresis, before performing enantioseparation. The influence of the concentrations of the studied cyclodextrins on the enantioseparation was explored and the experimental optimal concentrations were determined and compared to the theoretical optimal concentrations. Moreover, the apparent complexation constants between each studied cyclodextrin and the two DBBD enantiomers were evaluated using a non-linear curve fitting method and three linear plotting methods (x-reciprocal, y-reciprocal and double reciprocal). For TM-β-CD, the order of migration of the enantiomers of DBBD reversed as a function of TM-β-CD concentration. The influence of the nature of methylated cyclodextrin derivatives (methyl-β-CD (M-β-CD) and DM-β-CD) was then studied. Inversion of the order of migration of the enantiomers of DBBD was observed for DM-β-CD, whereas the S enantiomer of DBBD always migrated first for M-β-CD.  相似文献   

3.
The effects of the type of buffer system, buffer pH, the polarity of electrode, and both the type and the concentration of cyclodextrins (CDs) on the separation and migration behavior of seven positional and structural naphthalenesulfonate isomers in CD-mediated capillary electrophoresis were systematically investigated. The most effective separation conditions were to use 20 mM phosphate buffer with beta-CD at pH 3.0, while the polarity of the electrodes were reversed across the capillary. Under such conditions, these isomers can be separated in 10 min. The results also indicate that the interactions of naphthalenesulfonate derivatives with CDs are strongly affected by the position of the substituent(s) on the aromatic ring. The inclusion complex formation constants of these compounds were evaluated to improve our understanding of the interaction between the naphthalenesulfonate derivatives and CDs. Moreover, the formation constants of naphthalene-2-sulfonate to beta-CD agreed closely with the data in the literature obtained by a spectrophotometric method and by CE methods in various pH buffers.  相似文献   

4.
The thermodynamic properties of molecular recognition in host–guest inclusion complexes can be studied by Taylor dispersion analysis (TDA). Host–guest inclusion complexes have modest size, and it is possible to get convergent results fast, achieving greater certainty for the obtained thermodynamic properties. Cyclodextrins (CDs) and their derivatives can be used as drug carriers that can boost stability, solubility, and bioavailability of physiologically active substances. A simple and effective approach for assessing the binding properties of CD complexes that are critical in the early stages of drug and formulation development is needed to fully understand the process of CD and guest molecules’ complex formation. In this work, TDA was successfully used to rapidly determine interaction parameters, including binding constant and stoichiometry, between β-CD and folic acid (FA) along with the diffusivities of the free FA and its complex with β-CD. Additionally, the FA diffusion coefficient obtained by TDA was compared to the results previously obtained by nuclear magnetic resonance. Affinity capillary electrophoresis (ACE) was also used to compare the binding constants obtained by different methods. The results showed that the binding constants obtained by ACE were somewhat lower than those obtained by the two TDA procedures.  相似文献   

5.
N. Mofaddel  D. Villemin 《Talanta》2009,78(2):631-701
A simple model for the separation of atropisomers of binaphthol and its monoderivatives by means of cyclodextrin-modified capillary zone electrophoresis (CD-CZE) was used to describe the migration behavior of poly charged enantiomers in a chiral separation system. This mathematical approach allowed for the determination of the optimal cyclodextrin concentrations for the enantioseparation of binaphthols by taking into account the influence of the formed complex mobilities. Moreover, using this theoretical approach, the reversal of the enantiomers’ migration order as a function of cyclodextrin concentration was predicated. The apparent complexation constants between the cyclodextrins and the binaphthol and its monoderivatives could be calculated using a non-linear curve fitting method and three linear plotting methods (x-reciprocal, y-reciprocal and double reciprocal). Good agreements between the theoretical and experimental cyclodextrin concentrations were obtained.  相似文献   

6.
The thermal stabilities of some naphthalene derivatives (1-naphthyl acetate, 2-acetylnaphthalene, 1-naphthol) in β-cyclodextrin (β-CD) inclusion complexes and in β-CD-containing polymeric systems (Polyβ-CD) have been studied using thermal and thermogravimetric analyses and infrared spectroscopy. In β-CD systems, the stability of the 1-naphthyl acetate complex is lower than that of the 2-acetylnaphthalene complex, and both are more stable than the corresponding physical mixtures. For Polyβ-CD systems, the solid dispersions result much more stable than the corresponding β-CD ones, both at room temperature and at 60 °C. In the case of Polyβ-CD, besides the inclusion within CD cavities, the interaction of the guest with the crosslinking network confers an additional stability against volatilization. In contrast, an analogous crosslinked polymer prepared using sucrose instead of β-CD does not retain noticeable amounts of the naphthalene derivatives.  相似文献   

7.
The complexation of camptothecin and homocamptothecin derivatives, topoisomerase I inhibitors, with two cyclodextrins (CDs) of pharmaceutical interest (native and hydroxypropylated β-CD) was studied at pH 3.5 and 6. In a first step, the affinity order of the six compounds studied for the β-CD and HP-β-CD was evaluated in HPLC using immobilized stationary phases [Cyclobond I 2000 (β-CD) and Cyclobond I 2000 RSP (HP-β-CD)]. In a second step, the apparent binding constants of the 12 complexes studied were determined at both pH by HPLC using Scott’s method with CD as a chiral additive. The 1:1 stoichiometry of the complex formed between HP-β-CD and the homocamptothecin derivative elomotecan (R)-6 was established by fluorescence spectroscopy using the continuous variation method developed by Job and ESI-MS. Complementary investigations were achieved for topotecan (S)-3 and elomotecan (R)-6 using CE. Further studies provided similar conclusions concerning affinity of all the derivatives studied for both CDs: that is, a slightly larger affinity was observed for HP-β-CD with respect to β-CD, except for (S)-3. For (S)-3, this affinity increase with pH, in the range studied.  相似文献   

8.
The inclusion complexes of isoquercitrin (IQ) with cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and dimethyl-β-cyclodextrin (DM-β-CD) have been investigated using the methods of steady-state fluorescence, UV-vis absorption and induced circular dichroism. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was measured in the case of DM-β-CD due to the increased hydrophobicity of the host cavity, followed by HP-β-CD and β-CD. The effect of pH on the complexation process was also quantitatively assessed. IQ exists in different molecular forms depending on pH and β-CDs were most suitable for inclusion of the neutral form of IQ. The phase-solubility diagrams obtained with β-CD, HP-β-CD and DM-β-CD were all classical AL type. And DM-β-CD provided the best solubility enhancement, 12.3-fold increase compared to 2.8- and 7.5-fold increase for β-CD and HP-β-CD. The apparent stability constants obtained from the solubility data at 25 °C were comparable with those obtained from the fluorescence assays. Moreover, 1H NMR was carried out, which revealed that the IQ favorably inserted into the inner cavity from the chromone part instead of the phenyl part, which was in agreement with molecular modeling studies.  相似文献   

9.
The complexation of ester betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was studied by mobility shift affinity CE. Electrophoretic mobility for triangular peaks was calculated using the parameter a1 of the Haarhoff–Van der Linde function instead of the peak top time. Dependences of the viscosity corrected electrophoretic mobility on HP-β-CD concentration were not described on the basis of only complexes with 1:1 stoichiometry due to the fact that these binding curves did not reach a plateau. However, the dependences were well described taking into account both 1:1 and 1:2 complexes. The presence of higher order equilibria was also revealed by x-reciprocal plots. The values of apparent binding constant logarithm, obtained for the first time, for 1:1 and 1:2 HP-β-CD complexes of betulin 3,28-diphthalate and betulin 3,28-disuccinate with 95% confidence interval limits in brackets are the same within error and are equal to 4.85 (4.73–4.95), 8.56 (7.75–8.82), 4.92 (4.86–4.97), and 8.54 (8.23–8.72) at 25°C, respectively. These values for 1:1 and 1:2 HP-β-CD complexes of betulin 3,28-disulfate at 25°C are 4.61 (4.57–4.64) and 7.11 (6.57–7.34), respectively. The binding constants for betulin 3,28-disulfate agree with the previously obtained results from the separation in the thermostatted capillary segment.  相似文献   

10.
以酚酞作为光谱探针 ,采用紫外 可见光谱滴定法测定了 β 环糊精 (β CD)、单 (6 氧 α 麦芽糖 ) β 环糊精 (6 G2 β CD )和单 [2 氧 (2 羟丙基 ) ] β 环糊精 (2 HP β CD )在 2 5℃时 ,pH =10 5缓冲液中(0 0 2 5mol/L)与几种脂肪族手性客体分子所形成超分子配合物的稳定常数 .结果表明 ,多种弱相互作用力协同作用于环糊精的配位过程 ,主 客体间的尺寸匹配决定所形成配合物的稳定性 .环糊精衍生物的取代基影响主体的配位能力 ,对于尺寸较小的客体分子配位能力的大小一般为 2 HP β CD >β CD >6 G2 β CD .另一方面 ,3种环糊精主体化合物对一些脂肪族客体分子也表现出一定的手性识别能力 ,对 (+ ) 异构体给出相对较强的键合能力 ,其中 ,2 HP β CD对 (+ ) /(- ) 樟脑的配位选择性为 1 2 5 .  相似文献   

11.
The host–guest interaction of tolmetin (TOL) with β-cyclodextrin (β-CD) and the influence of human serum albumin (HSA) on the formation of the inclusion complex were studied by 1D and 2D NMR spectroscopy. The TOL/β-CD inclusion complex formed at a molar ratio of 1:1 with a binding constant value of 2164.5 L·mol?1. Data analysis showed that the addition of 10 μmol·L?1 of HSA weakened the strength of TOL binding to β-CD (K a = 1493 L·mol?1). The interaction of TOL with HSA in the absence and presence of β-CD was studied by analyzing the fluorescence quenching data. The Stern–Volmer quenching constants and the binding constants are found to be smaller in the presence of β-CD, suggesting that β-CD hinders the strong interaction of TOL with HSA by complex formation. Additionally, the presence of β-CD does not induce conformational and microenvironmental changes on HSA.  相似文献   

12.
The complexation of the triptolide PG490 and its succinate derivative PG490-88Na with various cyclodextrins was studied using three complementary techniques: affinity capillary electrophoresis (ACE), isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR). The apparent binding constants of the complexes formed between the drugs and 8 CDs (α-CD, β-CD, γ-CD, HP-α-CD, HP-β-CD, HP-γ-CD, CM-β-CD and amino-β-CD) were determined by ACE through linear Scott's plots. The apparent and averaged binding constants of the complexes formed between PG490-88 and β-CD, γ-CD, HP-α-CD, HP-β-CD or HP-γ-CD are contained in the narrow range 135-167 M(-1). For the anionic CM-β-CD and cationic amino-β-CD, these constants are 38 and 278 M(-1), respectively, which is in accordance with electrostatic repulsions or attractions with the succinate moiety. ITC and NMR investigations for the binding constants determinations were performed for 2 CDs allowing high complexation: HP-β-CD and amino-β-CD. The three techniques provided similar results. ITC and NMR, in contrast to ACE, allowed to study the complexes formed between the neutral compound PG490 and neutral cyclodextrins. A more advanced characterization of the PG 490-88Na/amino-β-CD complex, which displays the highest apparent binding constant, was undertaken using NMR spectroscopy. The 1:1 stoichiometry of the complex was established by (1)H NMR 1D and selective 1D TOCSY experiments using the continuous variation method. Moreover, the 1D and 2D ROESY experiments revealed the inclusion of the isopropyl moiety of the triptolide derivative in the hydrophobic CD cavity. Altogether, the data provide strong evidences that the two triptolide compounds can be efficiently complexed with CD.  相似文献   

13.
赵强  张骞  刘杰  邢生凯  孙得志 《化学学报》2008,66(7):827-830
在298.15K下,用微量热法测定了重要植物生长调节物质6-苄氧基嘌呤(6-BOP)和6-苄氨基嘌呤(6-BAP)与β-环糊精(β-CD)在pH值等于8.9的水溶液中包合作用的热效应,进而用非线性拟合法计算出了主-客体包合物的化学计量比、平衡常数、标准焓变和标准熵变等热力学参数。结合主-客体相互作用的紫外光谱信息,从6-苄氧基嘌呤和6-苄氨基嘌呤的分子结构出发讨论了主-客体分子相互作用的强弱以及热力学数据的差异。结果表明,β-环糊精对6-苄氧基嘌呤和6-苄氨基嘌呤具有明显的分子识别功能。  相似文献   

14.
以自组装方式在石英晶体谐振器的金电极表面修饰末端含巯基的β 环糊精衍生物(β CDd),用石英晶体微天平(QCM)在线监测α 、β 萘磺酸盐与之发生包结反应的过程,探讨了温度、浓度、取代基位置对包结反应稳定常数Kin和速率常数ka的影响.从理论上推导并通过实验验证了Kin和ka所遵从的关系式.结果表明:所形成的包结配合物中β CDd与萘磺酸盐的化学计量均为1:1;包结配位反应过程符合Langmuir吸附模型;取代基在萘环上的位置对Kin和ka有很大影响,说明不同取代位置的萘磺酸盐与β CDd的包结行为存在明显差异.  相似文献   

15.
The complexation of three isoquinoline alkaloids berberine, palmatine and coralyne with α-, β-, and γ-CDs were studied by absorption, fluorescence, circular dichroism, NMR spectroscopy and microcalorimetric assay techniques. Their binding constant (K BH) values were determined by Benesi–Hildebrand equation. All the alkaloids formed 1:1 stoichiometry complexes with the cyclodextrins (CDs). The binding affinity is largest in β-CD followed by γ-, and α-CD for coralyne, followed by berberine and then palmatine. The thermodynamic parameters of the complexation were determined by calorimetry. The stoichiometry of complex formation and the variation of the apparent binding constant from spectroscopic studies were confirmed by calorimetry. The formation of the inclusion complexes was entropy driven in almost all the systems. Coralyne formed the strongest complex with all the CDs, followed by berberine and palmatine in that order. Coralyne-β-CD complex was studied through NMR, indicating more than one interaction mode.  相似文献   

16.
The binding abilities of α- and β-cyclodextrins (α-CD and β-CD) with some heterocyclic azo compounds (1,1'-(azodicarbonyl)dipiperidine (ADP) and azodicarboxylic dimorpholide (ADM)) were studied at different pHs (4, 7.4 and 10) by UV-Vis spectroscopy and square-wave voltammetry techniques. The association constants (K i) and stoichiometries of the binding of these azo compounds with α-CD and β-CD were determined by using square-wave voltammetry technique. These bindings were formed with a stoichiometry of 1: 1 in solution. The solid samples, obtained from the mixtures (molar ratio of 1: 1) of these azo dyes and CDs in aqueous phase were analyzed by FT-IR spectroscopy and thermal analysis methods. Thermal analysis results showed that ADP and ADM formed the inclusion complexes with α-CD; however, the binding of the azo dyes with β-CD gave non-inclusion complexes.  相似文献   

17.
Tyrosol (TY), 4-(2-hydroxyethyl)phenol, is an olive oil biophenol with antioxidant activity and positive effects on human health. This study has investigated the interactions of TY with cyclodextrins (CD) and a CD polymer. Complexation of TY with β-CD, hydroxypropyl-β-CD (HP-β-CD), and methyl-β-CD (Me-β-CD) has been evaluated both in aqueous solution and in the solid state. The techniques employed in solution to determine the apparent stability constants of the respective complexes were fluorescence and UV–visible spectroscopies. Complexation with β-CD and its derivatives involved an increase of both the UV absorbance and the intrinsic fluorescence of TY; a bathochromic shift of the UV spectrum was detected as well. The apparent stability constants obtained with native β-CD, Me-β-CD and HP-β-CD presented similar values. Complexes in the solid state were obtained by coevaporation and kneading. They were characterised by X-ray diffraction analysis and differential thermal analysis. The interaction of TY with β-CD led to a crystalline complex; the same diffraction pattern was obtained by coevaporation and kneading. The complexes obtained with methyl- and HP-β-CD were amorphous irrespective of the preparation method. In addition, the retention of TY in an insoluble polymer of CD crosslinked with epichlorohydrin has been quantified. In approximately 20 min, 1 mg of TY per gram of polymer was retained.  相似文献   

18.
Five β-cyclodextrin (β-CD) derivatives bearing substituted phenylcarbamate/3-(triethoxysilyl)propylcarbamate groups at the 2-, 3-, and 6-positions of glucose unit and another five derivatives containing benzoate at the 2-position and substituted phenylcarbamate/3-(triethoxysilyl)propylcarbamate groups at the 3- and 6-positions were synthesized using the regioselective esterification method. The obtained β-CD derivatives were efficiently immobilized onto the silica gel through the intermolecular polycondensation of a small amount of the triethoxysilyl groups, which were used as the chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). The chiral separation properties of these CSPs were evaluated under the normal-phase HPLC. The effects of solvent polarity and the side chain structures of β-CD derivatives on the chiral recognition ability of the immobilized CSPs were investigated. Among these β-CD derivative CSPs, 2,3,6-tris(3,5-dichlorophenylcarbamate)-β-CD CSP showed a relatively high chiral recognition ability for the studied racemates. The regioselective esterification at the 2-position of glucose unit in the β-CD decreased the chiral recognition ability at the same conditions. For some racemates, the β-CD derivative CSPs showed chiral recognition abilities comparable or better to some chemical bonded β-CD derivative CSPs and 3,5-dichloro- and 3,5-dimethylphenylcarbamates of cellulose and amylose CSPs.  相似文献   

19.
利用荧光光谱法研究了环丙沙星与母体β-环糊精(β-CD)及其2种修饰衍生物羟丙基-β-环糊精(Hp-β-CD)、甲基-β-环糊精(Me-β-CD)形成的超分子体系,同时测定了3种超分子体系的猝灭常数和热力学参数.结果表明:环丙沙星与3种环糊精之间常温下均形成稳定的包合物;环丙沙星与3种环糊精包结过程中△G<0和△H<0,这说明环丙沙星与3种环糊精的包结能够自发进行而形成超分子体系,且反应为放热过程.通过对3种环糊精与环丙沙星的热力学数包结能力进行了比较,初步探讨了作用机理和影响包结能力大小的可能因素.  相似文献   

20.
The interaction between β-cyclodextrin (β-CD) and the polyphenol rosmarinic acid (RA) is here reported by 1H NMR titration experiments. The formation of an aqueous soluble inclusion complex is confirmed and valuable information regarding mode of penetration of guest into β-CD, stoichiometry, and stability of the complex is obtained. The analysis by the continuous variation method shows the undoubted formation of 1:1 β-CD/RA complex. Additionally, the estimated apparent association constants reveal the importance of the asymmetry of the RA in the complexation; the incorporation of the catechol moiety closer to the carboxylic group is more favorable (K?=?2,028 M?1) than from the other end of the RA molecule (K?=?1,184 M?1). Finally, we have also investigated the antioxidant activity and storage stability of the β-CD/RA complexed system; the presence of β-CD was found to produce a remarkable enhancement on the antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号