首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption of oxygen atoms on Mg3Nd (0 0 1) surface was studied based on density function theory (DFT), in which the exchange-correlation potential was chosen as the generalized gradient approximation (GGA) in the Perdew and Wang (PW91). The most preferred adsorption position was at the top-hollow site. Upon the optimization on top-hollow site with different coverage, it was found that the adsorption energy decreased with oxygen coverage. The density of states analysis showed that obvious charge transfer took place between O atom and the nearest Nd atom and chemical bond formed between O atom and the nearest Nd atom after O adsorption. The result of surface energy as a function of chemical potential change of oxygen indicated the clean Mg3Nd (0 0 1) surface was easy to adsorb oxygen and form 1.00 ML surface.  相似文献   

2.
Experimental observations indicate that removing bridging oxygen atoms from the TiO2 rutile (1 1 0) surface produces a localised state approximately 0.7 eV below the conduction band. The corresponding excess electron density is thought to localise on the pair of Ti atoms neighbouring the vacancy; formally giving two Ti3+ sites. We consider the electronic structure and geometry of the oxygen deficient TiO2 rutile (1 1 0) surface using both gradient-corrected density functional theory (GGA DFT) and DFT corrected for on-site Coulomb interactions (GGA + U) to allow a direct comparison of the two methods. We show that GGA fails to predict the experimentally observed electronic structure, in agreement with previous uncorrected DFT calculations on this system. Introducing the +U term encourages localisation of the excess electronic charge, with the qualitative distribution depending on the value of U. For low values of U (?4.0 eV) the charge localises in the sub-surface layers occupied in the GGA solution at arbitrary Ti sites, whereas higher values of U (?4.2 eV) predict strong localisation with the excess electronic charge mainly on the two Ti atoms neighbouring the vacancy. The precise charge distribution for these larger U values is found to differ from that predicted by previous hybrid-DFT calculations.  相似文献   

3.
The surface relaxation and surface energy of both the mixed AuCu and pure Cu terminated Cu3Au (0 0 1) surfaces are simulated and calculated by using the modified analytical embedded-atom method. We find that the mixed AuCu termination is energetically preferred over the pure Cu termination thereby the mono-vacancy diffusion is also investigated in the topmost few layers of the mixed AuCu terminated Cu3Au (0 0 1) surface. In the mixed AuCu terminated surface the relaxed Au atoms are raised above Cu atoms for 0.13 Å in the topmost layer. All the surface atoms displace outwards, this effect occurs in the first three layers and changes the first two inter-layer spacing. For mono-vacancy migration in the first layer, the migration energies of Au and Cu mono-vacancy via two-type in-plane displace: the nearest neighbor jump (NNJ) and the second nearest neighbor jump (2NNJ), are calculated and the results show that the NNJ requires a much lower energy than 2NNJ. For the evolution of the energy requirements for successive nearest neighbor jumps (SNNJ) along three different paths: circularity, zigzag and beeline, we find that the circularity path is preferred over the other two paths due to its minimum energy barriers and final energies. In the second layer, the NN jumps in intra- and inter-layer of the Cu mono-vacancy are investigated. The calculated energy barriers and final energies show that the vacancy prefer jump up to a proximate Cu site. This replacement between the Cu vacancy in the second layer and Cu atom in the first layer is remunerative for the Au atoms enrichment in the topmost layer.  相似文献   

4.
The adsorption of methylcyclopentane (MCP) on Pt(1 1 1) has been studied using the atom superposition and electron delocalization (ASED-MO) molecular orbital method. Results show a weak interaction with the metallic surface. The adsorption energy is rather independent of the adsorption site coordination number. We find that Pt 6s, 6pz and 5dz2 orbitals are involved in the bonding with MCP. There is no bonding between the carbon ring and the Pt surface and the interaction comes from the hydrogen atoms to the surface.  相似文献   

5.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

6.
T. ?lusarski 《Surface science》2009,603(8):1150-22997
Adsorption of sulfur at the (1 0 0) surface of gold is analyzed with the help of the density functional theory (DFT). Potential energy surface for a single S atom at the Au(1 0 0) surface is computed and a simple analytical formula was found to reproduce the ab initio results to a good accuracy. Vibration frequencies of the adsorbed S atom are computed using the harmonic approximation and the contribution of zero-point motion to the adsorption energy is evaluated. The effects of surface Au atoms relaxation in the sulfur adsorption is analyzed. The interactions between S atoms adsorbed at the nearest and the next nearest equivalent adsorption sites are computed and used to define the effective Hamiltonian describing the interactions between the adsorbed sulfur atoms.  相似文献   

7.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

8.
D. Kecik 《Surface science》2009,603(2):304-3199
A first principles study is performed to investigate the adsorption characteristics of hydrogen on magnesium surface. Substitutional and on-surface adsorption energies are calculated for Mg (0 0 0 1) surface alloyed with the selected elements. To further analyze the hydrogen-magnesium interaction, first principles molecular dynamics method is used which simulates the behavior of H2 at the surface. Also, charge density differences of substitutionally doped surface configurations were illustrated. Accordingly, Mo and Ni are among the elements yielding lower adsorption energies, which are found to be −9.2626 and −5.2995 eV for substitutionally alloyed surfaces, respectively. In light of the dynamic calculations, Co as an alloying element is found to have a splitting effect on H2 in 50 fs, where the first hydrogen atom is taken inside the Mg substrate right after the decomposition and the other after 1300 fs. An interesting remark is that, elements which acquire higher chances of adsorption are also seen to be competent at dissociating the hydrogen molecule. Furthermore, charge density distributions support the results of molecular dynamics simulations, by verifying the distinguished effects of most of the 3d and 4d transition metals.  相似文献   

9.
We have recently reported structure solutions for the (2 × 1) and c(4 × 2) reconstructions of SrTiO3(0 0 1) based on high-resolution electron microscopy, direct methods analysis of diffraction data and density functional theory. Both reconstructions were found to be TiO2-rich and feature a single overlayer of TiO2 stoichiometry on top of a bulk-like TiO2 layer. Qualitatively, the two reconstruction geometries differ in the cation sub-lattice of the overlayer only, where Ti atoms occupy half of the fivefold cation sites. In the present work we use density functional theory to generate a number of variations of this structural motif in search of patterns of stability. We find a reliable predictor for the reconstruction energy in the ability of oxygen atoms to relax vertically out of the overlayer plane to minimize non-bonded oxygen-oxygen repulsions. Out-of-plane relaxation of oxygen atoms in turn is modulated by the number and relative position of coordinating Ti atoms, which yields simple empirical rules as to how cations are distributed in low energy reconstructions.  相似文献   

10.
Adsorption of Na on the Ge(0 0 1) surface is known to be a cause of surface reconstruction. It is expected to find one Na atom per unit cell of the reconstructed surface, however, the precise atomic configuration of this system is still a matter of controversy. Consequently, the aim of our present theoretical study is to examine the atomic structure of stable p(3 × 2)/Na/Ge(0 0 1) surfaces with and without the possible change of the number of Ge atoms in the surface layer (so-called mass transport). Structural and electronic properties of the considered system are investigated using the local-orbital density functional method. Our considerations are completed by a simulation of STM images of the structures following from molecular dynamics calculations.  相似文献   

11.
The adsorption energies of intermediates in CO methanation on the modified Ni3Al(1 1 1) surface and the Ni(1 1 1) surface are calculated using density functional theory. A microkinetic analysis based on the calculated adsorption energies is performed to explain the different kinetics of CO methanation catalyzed by Ni3Al and Ni powders. The electronic structures of different atoms on the modified Ni3Al surface are also presented, and correlate well with the adsorption energies and geometries.  相似文献   

12.
To elucidate the initial growth of metal on oxide surface, we studied adsorption of small nickel clusters, Nin (n = 1-5), on MgO(0 0 1) surface using first-principles method based on density-functional theory. It was found that the preferential adsorption site for an isolated Ni atom is directly above the surface oxygen atom. A strong covalent bond with partial ionic character is formed between the Ni adatom and the surface oxygen atom. Various structures were considered for the Nin isomers and 3D structures were found to be energetically more stable than 2D structures for clusters of more than two atoms. For the 2D clusters, metal-metal bonds prevail over metal-substrate bonds with increasing Ni coverage. The calculated work function and ionization energy were found to vary with Ni coverage which is attributed to the change of the surface dipole moment upon metal adsorption, while the evolution of Schottky barrier height at the initial growth stage is dominated by the adatom-induced gap states.  相似文献   

13.
The structure, energetics and magnetic properties of the quasihexagonal reconstruction of the Ir(1 0 0) surface and nanostructures formed by Fe atoms on this surface have been investigated using first-principles density functional theory with generalized gradient corrections. We find the reconstructed (1 × 5) surface to be 0.10 eV/(1 × 1) area lower in energy than the unreconstructed surface and we demonstrate that first-principles calculations can achieve quantitative agreement with experiment even for such long-period and deep-going reconstructions. For Fe coverage of 0.4 monolayers (ML) we have studied the stripe-like structure with biatomic Fe rows placed in the troughs of the (1 × 5)-reconstructed surface. Results of nonmagnetic calculations agree well with the structure inferred from STM data. Higher Fe coverages lead to a de-reconstruction of the Ir substrate. At 0.8 ML coverage a surface compound with composition Fe4Ir is formed, which shows an appreciable buckling. In this case, a ferromagnetic calculation leads to good agreement with the low-temperature LEED data. We predict that the (1 × 5) periodicity of the mixed interface layer will persist also in thicker films with a pure Fe surface. Films with 1-4 ML Fe are predicted to be tetragonally distorted and ferromagnetic, with an axial ratio corresponding well to an elastic distortion of the Fe lattice.  相似文献   

14.
We present results of ab initio calculations of structural, electronic and vibrational properties of the Ge(0 0 1) surface covered with a monolayer of arsenic. The fully occupied πu bonding and πg antibonding electronic states due to the As-As dimer formation are quite close in energy and their ordering is same as that found on the Si(0 0 1) surface. Using our calculated atomic and electronic structures, surface lattice dynamics was studied by employing a linear response approach based on density functional perturbation theory. A comparison of the phonon spectrum of the Ge(0 0 1)/As(2 × 1) surface with that of the clean Ge(0 0 1)(2 × 1) surface indicates the presence of several new characteristic phonon modes due to adsorption of As atoms.  相似文献   

15.
Studies of strain-induced changes in surface properties of metal/alloy surface have long been concerned by lot of scientists. However, the strain effects on the work function (WF), and in particular, its physical mechanism have not been well understood. In this paper, we employed a first-principles method to study the effects of biaxial strain in WF on the (0 0 1), (1 1 0) and (1 1 1) surfaces of AlCu3. The relationship among the WF change, atomic relaxation and charge transfer induced by strain was discussed. The calculated results showed that tensile strain decreased the WF, while the compressive strain increased the WF; a larger atomic relaxation often followed with a larger WF change. The sensitivity of the WF with respect to the strain was strongly dependent on the direction of the surface or the density of atom packed plane of the surface.  相似文献   

16.
Adsorption of the methoxy radical on clean and on low oxygen precovered Ru(0 0 0 1) metallic surfaces has been studied by density-functional theory cluster calculations. Methoxy is predicted to be preferentially chemisorbed on both hollow sites (hcp and fcc) of such surfaces, and adopts an upright orientation (C3ν local symmetry). Such prediction is supported by the good agreement found between the calculated vibrational frequencies and the experimentally observed RAIRS spectra. Regarding the charge transfer process between the adsorbate and the surface, our results suggest that the bonding is dominantly polar covalent which arises from a charge donation from the ruthenium surface to the radical, and the co-adsorbed electronegative oxygens deplete slightly the surface electron density. However, the major difference is not induced through much O-Ru bonding, but indirectly, by lowering the valence d-band center of the system. This results in a lower adsorption energy for methoxy than on the clean Ru(0 0 0 1) surface, in accordance with experimental data. Further, accordingly to the present calculations, the radical is expected to dissociate or desorb more easily on the modified surface but with no participation from the co-adsorbed oxygen atoms.  相似文献   

17.
Density functional theory has been applied to a study of the electronic structure of the ideally-terminated, relaxed and H-saturated (0 0 0 1) surfaces of β-Si3N4 and to that of the bulk material. For the bulk, the lattice constants and atom positions and the valence band density of states are all in good agreement with experimental results. A band gap of 6.7 eV is found which is in fair accord with the experimental value of 5.1-5.3 eV for H-free Si3N4. Using a two-dimensionally-periodic slab model, a π-bonding interaction is found between threefold-coordinated Si and twofold-coordinated N atoms in the surface plane leading to π and π* surface-state bands in the gap. A surface-state band derived from s-orbitals is also found in the gap between the upper and lower parts of the valence band. Relaxation results in displacements of surface and first-underlayer atoms and to a stronger π-bonding interaction which increases the π-π* gap. The relaxed surface shows no occupied surface states above the valence band maximum, in agreement with recent photoemission data for a thin Si3N4 film. The π* band, however, remains well below the conduction band minimum (but well above the Fermi level). Adsorbing H at all dangling-bond sites on the ideally-terminated surface and then relaxing the surface and first underlayer leads to smaller, but still finite, displacements in comparison to the clean relaxed surface. This surface is more stable, by about 3.67 eV per H, than the clean relaxed surface.  相似文献   

18.
The optimized structure of the WO3(0 0 1) surface with various types of termination ((1 × 1)O, (1 × 1)WO2, and c(2 × 2)O) has been simulated using density functional theory with the Perdew-Wang 91 gradient corrected exchange-correlation functional. While the energy of bulk WO3 depends weakly on the distortions and tilting of the WO6 octahedra, relaxation of the (0 0 1) surface results in a significant decrease of surface energy (from 10.2 × 10−2 eV/Å2 for the cubic ReO3-like, c(2 × 2)O-terminated surface to 2.2 × 10−2 eV/Å2 for the relaxed surface). This feature illustrates a potential role of surface relaxation in formation of crystalline nano-size clusters of WO3. The surface relaxation is accompanied by a dramatic redistribution of the density of states near the Fermi level, in particular a transformation of surface electronic states. This redistribution is responsible for the decrease of electronic energy and therefore is suggested to be the driving force for surface relaxation of the WO3(0 0 1) surface and, presumably, similar surfaces of other transition metal oxides.  相似文献   

19.
Strain-induced nanopatterns formed by the coadsorption of nitrogen and oxygen atoms are studied on the Cu(0 0 1) surface by scanning tunneling microscopy. A square grid pattern similar to that on the N-adsorbed surface appears, and consists of square c(2 × 2) areas with adsorbed N and O atoms when the total density of the adsorbates is around 30% of the Cu atom density on the clean surface. We evaluated the surface strain using a first-principles calculation for a coadsorbed surface and compared it with those on the clean and N-adsorbed surfaces. The strain on the coadsorbed surface is smaller than that of the N-adsorbed surface. The observed size of the square c(2 × 2) area on the coadsorbed surface is larger than that on the N-adsorbed surface with increasing the density of the adsorbates on average as expected by the strain reduction. On the other hand, there is no significant difference in the period of the grid pattern.  相似文献   

20.
The initial stages of oxidation of the In-rich InAs(0 0 1)-(4 × 2)/c(8 × 2) surface by molecular oxygen (O2) were studied using scanning tunneling microscopy (STM) and density functional theory (DFT). It was shown that the O2 dissociatively chemisorbs along the rows in the [1 1 0] direction on the InAs surface either by displacing the row-edge As atoms or by inserting between In atoms on the rows. The dissociative chemisorption is consistent with being autocatalytic: there is a high tendency to form oxygen chemisorption sites which grow in length along the rows in the [1 1 0] direction at preexisting oxygen chemisorption sites. The most common site size is about 21-24 Å in length at ∼25% ML coverage, representing 2-3 unit cell lengths in the [1 1 0] direction (the length of ∼5-6 In atoms on the row). The autocatalysis was confirmed by modeling the site distribution as non-Poisson. The autocatalysis and the low sticking probability (∼10−4) of O2 on the InAs(0 0 1)-(4 × 2)/c(8 × 2) are consistent with activated dissociative chemisorption. The results show that is it critical to protect the InAs surface from oxygen during subsequent atomic layer deposition (ALD) or molecular beam epitaxy (MBE) oxide growth since oxygen will displace As atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号