首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Static and dynamic hydrophobicities of water droplet on a patterned surface prepared using fluoroalkylsilanes with different molecular chain lengths were investigated. Contact angles on the patterned surfaces well agreed with values predicted using Cassie’s theory. On the same line width ratio, total retention force was governed by the fluoroalkylsilane with slow-sliding acceleration. The total retention force decreased with the decreasing width ratio of silane with slow-sliding acceleration on the surface. These results imply that the sliding acceleration of water droplets on a hydrophobic surface depends both on chemical composition and patterning structure.  相似文献   

2.
Typical VOF algorithms rely on an implicit slip that scales with mesh refinement, to allow contact lines to move along no-slip boundaries. As a result, solutions of contact line phenomena vary continuously with mesh spacing; this paper presents examples of that variation. A mesh-dependent dynamic contact angle model is then presented, that is based on fundamental hydrodynamics and serves as a more appropriate boundary condition at a moving contact line. This new boundary condition eliminates the stress singularity at the contact line; the resulting problem is thus well-posed and yields solutions that converge with mesh refinement. Numerical results are presented of a solid plate withdrawing from a fluid pool, and of spontaneous droplet spread at small capillary and Reynolds numbers.  相似文献   

3.
Both fluoroalkylsilane (FAS) and octadecyltrimethoxysilane (ODS) were coated on oxidized silicon wafers using soaking and CVD method. Smooth coatings with Ra values of less than 1 nm were attained. The slope of the sliding acceleration against the inverse of the droplet mass showed an inflection point. That point shifted to the direction of smaller droplets with decreasing FAS ratio to ODS. The water droplets’ length was increased when the sliding velocity was increased. Fluoroalkylsilane addition to ODS increases the interaction between water and the hydrophobic surface. Results showed that the sliding acceleration of a water droplet depends strongly on the surface ratio of these silanes.  相似文献   

4.
Three types of reusable stamps with features in the form of 2D arrays of pits having lateral dimensions in the range of 2-80 μm and heights of 1.5-15 μm were successfully employed for the hot embossing of PTFE at temperatures up to 50 °C above the glass transition temperature of PTFE amorphous phase. Due to the softening of PTFE at the temperatures used in this study, we were able to decrease imprint pressure significantly when comparing with the imprint conditions reported by other authors. Impact of the imprint temperature, pressure and time on the fidelity of pattern transfer as well as on water repellency was tested. The best results of embossing were achieved by applying pressure of 10 kg/cm2 for 2 min at 170 °C. In this case, flattening of a natural PTFE roughness and pretty accurate deep replicas of the stamp patterns were observable on the whole imprinted area. Improvement in water repellency was largest for the samples imprinted by Ni stamp patterned with a 2D array of 2 μm square pits spaced by the same dimension and having a depth of 1.5 μm. Cassie-Baxter wetting regime was observed for the deepest imprints with water contact angles up to the superhydrophobic limit.  相似文献   

5.
Yu-Tian Shen 《中国物理 B》2022,31(5):56801-056801
Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry. Electric control is widely used to modify interfacial water, where the influence of surface charges is inevitable. Here we obtain positively and negatively charged surfaces using LiTaO3 crystals and observe that a large net surface charge up to 0.1 C/m2 can nominally change the contact angles of pure water droplets comparing to the same uncharged surface. However, even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols. Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet, while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface. Our results not only provide a fundamental understanding of the interactions between charged surfaces and water, but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments.  相似文献   

6.
Sliding behavior of water droplets on line-patterned hydrophobic surfaces   总被引:1,自引:0,他引:1  
We prepared line-patterned hydrophobic surfaces using fluoroalkylsilane (FAS) and octadecyltrimethoxysilane (ODS) then investigated the effect of line direction on sliding behavior of water droplets by direct observation of the actual droplet motion during sliding. Water droplets slide down with a periodic large deformation of the contact line and sliding velocity fluctuation that occurred when they crossed over the 500-μm ODS line regions in FAS regions on a Si surface tilted at 35°. These behaviors are less marked for motion on a 100-μm line surface, or on lines oriented parallel to the slope direction. Smaller droplets slide down with greater displacement in the line direction on 500-μm line patterning when the lines were rotated at 13° in-plane for the slope direction. This sliding behavior depended on the droplet size and rotation angle, and is accountable by the balance between gravitational and retentive forces.  相似文献   

7.
During evaporation, shape changes of nanoliter-scale (80-100 nL) water droplets were evaluated on two superhydrophobic surfaces with different random roughness (nm-coating, μm-coating). The square of the contact radius and the square of the droplet height decreased linearly with evaporation time. However, trend changes were observed at around 170 s (nm-coating) and around 150 s (μm-coating) suggesting a wetting mode transition. The calculated droplet radii for the wetting mode transition from the average roughness distance and the average roughness height of these surface structures were approximately equal to the experimental values at these trend changes. A certain level of correlation between the roughness size and droplet radius at the wetting mode transition was confirmed on surfaces with random roughness.  相似文献   

8.
Motion and deformation of a water-based magnetic fluid on a hydrophobic surface were investigated under gravity and a magnetic field. Surface energy and the resultant contact angle of the magnetic fluid depend on the surfactant concentration. The fluid viscosity is governed mainly by magnetite concentration. The front edge of the droplet moved under a weak external field. The rear edge required a higher external field for movement. The forces of gravity and the magnetic field for moving of the front edge are almost equal. However, those of the rear edge are different. The motion of magnetic fluids by an external field depends on concentrations of surfactants and magnetic particles, the external field, and experimental assembly.  相似文献   

9.
An artificial fingerprint liquid is formulated from artificial sweat, hydroxyl-terminated polydimethylsiloxane and a solvent for direct determination of anti-fingerprint property of a coated surface. A range of smooth and rough surfaces with different anti-fingerprint (AF) properties were fabricated by sol-gel technology, on which the AF liquid contact angles, artificial fingerprint and real human fingerprints (HF) were verified and correlated. It is proved that a surface with AF contact angle above 87° is fingerprint free. This provides an objective and quantitative test method to determine anti-fingerprint property of coated surfaces. It is also concluded that AF property can be achieved on smooth and optically clear surfaces. Deep porous structures are more favorable than bumpy structure for oleophobic and AF properties.  相似文献   

10.
In this study, the two-step sol-gel process was used to prepare hydrophobic coating films on the glass substrates. The first step was to add hydrogen chloride into TEOS (tetraethoxysilane) solution, and then the second step was to add ammonia into the above reacted solution. We adopted different amount of hydrogen chloride and ammonia to control the sol-gel reaction and observed the change of the viscosity, gelatin period of the solution and contact angles of the coating films. By this method, we created a surface with roughness and then the hydroxyl groups were terminated by adding trimethylchlorosilane (TMCS) to produce a hydrophobic coating layer. The amount of the acid, base and water added in the solution influenced the reaction rate and resulted in the aggregation and condensation of the particles to form rough surfaces. Consequently, the rough surfaces made by aggregation and condensation of the large particles, which were modified by TMCS resulted in higher contact angles (>140°). In this study, a surface with contact angle 150° was obtained.  相似文献   

11.
Tiina Rasilainen 《Surface science》2009,603(14):2240-2109
Anisotropically microstructured and hierarchically micro/nanostructured surfaces were fabricated on polypropylene by injection moulding. Microstructured mould inserts were obtained by structuring electropolished aluminium foils with a micro-working robot, and hierarchically structured mould inserts by anodizing the microstructured aluminium foils. On both types of inserts, the microstructures were anisotropic, consisting of alternating smooth and microstructured zones. Anisotropy, and other properties of microstructures, can be controlled by adjusting the parameters of the micro-working robot. The mould inserts were used to prepare micro- and hierarchically structured polypropylene discs by injection moulding. Replication accuracy at both structure levels can be controlled through the moulding conditions. The behaviour of water on the structures was characterized by measuring the contact and sliding angles parallel and perpendicular to the microstructured zones. Surfaces with microstructures alone were highly hydrophobic, where water droplets adopted the Wenzel state and had clearly different parallel and perpendicular contact angles. Surfaces with dual structures had contact angles near 170° and sliding angles near 0°, and again the angles in parallel and perpendicular directions differed. Superhydrophobic, anisotropic Cassie-Baxter state was achieved.  相似文献   

12.
Two facile coating techniques, gravitational sediment and spin coating, were applied for the creation of silica sphere stacking layers with different textures onto glass substrates that display various sliding abilities toward liquid drops with different surface tensions, ranged from 25.6 to 72.3 mN/m. The resulting silica surface exhibits oil repellency, long-period durability > 30 days, and oil sliding capability. The two-tier texture offers a better roll-off ability toward liquid drops with a wide range of γL, ranged from 30.2 to 72.3 mN/m, i.e., when the sliding angle (SA) < 15°, the oil droplet start to roll off the surface. This improvement of sliding ability can be ascribed to the fact that the two-tier texture allows for air pockets (i.e., referred to as the Cassie state), thus favoring the self-cleaning ability. Taking Young-Duprè equation into account, a linearity relationship between sine SA and work of adhesion (Wad) appears to describe the sliding behavior within the Wad region: 2.20-3.03 mN/m. The smaller Wad, the easier drop sliding (i.e., the smaller SA value) takes place on the surfaces. The Wad value ∼3.03 mN/m shows a critical kinetic barrier for drop sliding on the silica surfaces from stationary to movement states. This work proposes a mathematical model to simulate the sliding behavior of oil drops on a nanosphere stacking layer, confirming the anti-oil contamination capability.  相似文献   

13.
The nanotribology mechanism of alkanethiol self-assembled monolayers (SAM) chemisorbed on a gold surface under a non-flat contact by a tilt plane was studied using molecular dynamics (MD) simulations. The molecular trajectories, tilt angles, normal forces, shear forces, and frictional coefficient of the SAM were evaluated during the friction and relaxation processes for various parameters, including the tilt angle of the slider, interference magnitude, and SAM length. At the nanoscale, the magnitude of interface interactional forces is strongly dependent on the magnitude of the contact area, not on the surface geometry. The contact area and the exerted normal force of the SAM increase with decreasing the tilt angle of the slider at the same contact interference. In contrast, the periods in both normal force and shear force are gradually delayed as the tilt angle of the slider increases. Once the contact interference increases, the normal force and shear force increase together. During the sliding friction process with a smaller tilt slider angle, SAM molecules can maintain a better collective ordered structure. Short SAM molecules are more sensitive to a compressive loading and react to a larger normal force under the same contact interference due to the deformation of a larger tilt angle and decrease in chain length. The friction coefficient of SAM is significantly more dependent on the tilt angle of the slider than the contact interference.  相似文献   

14.
Small water drops demonstrate different evaporation modes on super-hydrophobic polymer surfaces with different hysteresis of contact angle. While on the high-hysteresis surface evaporation follows the constant-contact-diameter mode, the constant-contact-angle mode dominates on the low-hysteresis surface. These modes were previously reported for smooth hydrophilic and hydrophobic surfaces, respectively. The experimental data are compared to the previous models describing spherical cap drops that evaporate in different modes, and good fitting is obtained.  相似文献   

15.
用矢量分析的方法求出刚体在固定曲面上作纯滚动时接触点、即速度瞬心的加速度的表示式.  相似文献   

16.
We have investigated a one-step fabrication of fluoro-containing silica coating on wooden substrates, showing multi-functions including super repellency toward water and sunflower oil, low sliding angles, good durability, and low adsorption capacity of moisture. The repellent slurry, consisting of well-mixing silica nanospheres and perfluoroalkyl methacrylic copolymer, is simply prepared and subsequently sprayed over wooden substrates with good adhesion. It has shown that the decoration of silica nanospheres on microscaled wooden texture acts as a crucial role in improving the repellency toward water and sunflower oil droplets. The maximal contact angles can reach as high as 168.3° and 153.6° for water and sunflower oil drops, respectively. These analyses of wetted fraction and work of adhesion also demonstrate the improved repellency due to the addition of silica. This improvement of the repellencies is ascribed to the fact that the drops partially sit on F-coated silica spheres, leaving a layer of air underneath the droplet (i.e., Cassie state). On the basis of the results, the multi-functional coating on wooden substrates delivers a promising commercial feasibility on a variety of woodworks.  相似文献   

17.
The tendency to soil and cleanability of ten commercial plastic floor coverings: eight vinyl (PVC) floor coverings, one vinyl composite tile and one plastic composite tile, were examined. Floor coverings were soiled with inorganic, organic and biological soil. The cleanability was measured both by bioluminescence of ATP (adenosine triphosphate) and colorimetrically. The surface topography was studied by AFM, SEM and with a profilometer. From the 2D- and 3D-profilometric measurements several characteristic parameters of the surface profiles were extracted. The tendency to soil and cleanability were compared with the characteristics of the surface. A weak correlation was found between roughness and soilability but no correlation between roughness and cleanability. Roughness had no correlation with contact angle.  相似文献   

18.
Recent research has demonstrated that electrical energy can be harvested when water droplets move over a hydrophobic polymer covered by a single electrode on its back-side. Here we study the charge dynamics as water droplets pass the polymer. We also investigate how the charging of an external capacitor changes with water flow volume rate, and present a model to understand the results.  相似文献   

19.
《Surface Science Reports》2014,69(4):325-365
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.  相似文献   

20.
A relationship between triboelectric charge and contact force for two triboelectric layers is presented, by combining the theories of insulator contact charging and contact mechanics. Experimental verification has been successfully performed using contact-mode triboelectric nanogenerators (TENGs) in two cases: (a) under varying contact forces while keeping the surface roughness profile constant, and (b) under varying surface roughness profiles while keeping the contact force constant. The theory presented here can serve as an important guide in the design of triboelectric systems, particularly of a contact-mode TENG structure for specific applications and self-powered systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号