首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
T. Schalow  H.-J. Freund 《Surface science》2006,600(12):2528-2542
We have quantitatively studied the interaction between oxygen and an Fe3O4-supported Pd model catalyst by molecular beam (MB) methods, time resolved IR reflection absorption spectroscopy (TR-IRAS) and photoelectron spectroscopy (PES) using synchrotron radiation. The well-shaped Pd particles were prepared in situ by metal evaporation and growth under ultrahigh vacuum (UHV) conditions on a well-ordered Fe3O4 film on Pt(1 1 1).It is found that for oxidation temperatures up to 450 K oxygen predominantly chemisorbs on metallic Pd whereas at 500 K and above (∼10−6 mbar effective oxygen pressure) large amounts of Pd oxide are formed. These Pd oxide species preferentially form a thin layer at the particle/support interface, stabilized by the iron-oxide support. Their formation and reduction is fully reversible. Upon decomposition, oxygen is released which migrates back onto the metallic part of the Pd surface. In consequence, the Pd interface oxide layer acts as an oxygen reservoir, the capacity of which by far exceeds the amount of chemisorbed oxygen on the metallic surface.Additionally, Pd surface oxides can also be formed at temperatures above 500 K. The extent of surface oxide formation critically depends on the oxidation temperature. This effect is addressed to different onset temperatures for oxidation of the particle facets and sites. It is shown that the presence of Pd surface oxides sensitively modifies the adsorption and reaction properties of the model catalyst, i.e. by lowering the CO adsorption energy and CO oxidation probability. Still, a complete reduction of the Pd surface oxides can be obtained by extended CO exposure, fully reestablishing the metallic Pd surface.  相似文献   

2.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

3.
Zhenjun Li 《Surface science》2007,601(8):1898-1908
The formation of alloys by adsorbing gold on a Pd(1 1 1) single crystal substrate and subsequently annealing to various temperatures is studied in an ultrahigh vacuum by means of Auger and X-ray photoelectron spectroscopy. The nature of the alloy surface is probed by CO chemisorption using temperature-programmed desorption and reflection-absorption infrared spectroscopy. It is found that gold grows in a layer-by-layer fashion on Pd(1 1 1) at 300 K, and starts to diffuse into the bulk after annealing to above ∼600 K. Alloy formation results in a ∼0.5 eV binding energy decrease of the Au 4f XPS signals and a binding energy increase of the Pd 3d features of ∼0.8 eV, consistent with results obtained for the bulk alloy. The experimentally measured CO desorption activation energies and vibrational frequencies do not correlate well with the surface sites expected from the bulk alloy composition but are more consistent with significant preferential segregation of gold to the alloy surface.  相似文献   

4.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

5.
Z. Dohnálek 《Surface science》2006,600(17):3461-3471
Thin Pd films (1-10 monolayers, ML) were deposited at 35 K on a Pt(1 1 1) single crystal and on an oxygen-terminated FeO(1 1 1) monolayer supported on Pt(1 1 1). Low energy electron diffraction, Auger electron spectroscopy, and Kr and CO temperature programmed desorption techniques were used to investigate the annealing induced changes in the film surface morphology. For growth on Pt(1 1 1), the films order upon annealing to 500 K and form epitaxial Pd(1 1 1). Further annealing above 900 K results in Pd diffusion into the Pt(1 1 1) bulk and Pt-Pd alloy formation. Chemisorption of CO shows that even the first ordered monolayer of Pd on Pt(1 1 1) has adsorption properties identical to bulk Pd(1 1 1). Similar experiments conducted on FeO(1 1 1) indicate that 500 K annealing of a 10 ML thick Pd deposit also yields ordered Pd(1 1 1). In contrast, annealing of 1 and 3 ML thick Pd films did not result in formation of continuous Pd(1 1 1). We speculate that for these thinner films Pd diffuses underneath the FeO(1 1 1).  相似文献   

6.
The paper reports the diffusion coefficients of grain boundary diffusion and grain boundary assisted lattice diffusion of Pd in Mg in Pd/Mg/Si system, a useful material for hydrogen storage, at 473 K in vacuum. The grain boundary diffusivity is measured by Whipple model and grain boundary assisted lattice diffusivity by plateau rise method using Pd depth profiles constructed by Rutherford backscattering spectrometry. It is established that grain boundary diffusivities are about six orders of magnitude faster than lattice diffusivities. Fine grained microstructure of Pd film, high abundance of defects in Mg film and higher stability associated with Pd-Mg intermetallics are responsible for the diffusion of Pd into grain boundaries and subsequently in the interiors of Mg. Besides the indiffusion of Pd, annealing also brings about an outdiffusion of Mg into Pd film. Examination by nuclear reaction analysis involving 24Mg(p,p′γ)24Mg resonance reaction shows the occurrence of Mg outdiffusion. Minimization of surface energy is presumably the driving force of the process. In addition to Pd/Mg interface, diffusion occurs across Mg/Si (substrate) interface as well on increasing the annealing temperature above 473 K. These studies show that dehydrogenation of films accomplished by vacuum annealing should be limited to temperatures less than 473 K to minimize the loss of surface Pd, the catalyst of the hydrogen absorption-desorption process and Mg, the hydrogen storing element, by way of interfacial reactions.  相似文献   

7.
Structural changes that occur on Pd-Nb2O5/Cu3Au(1 0 0) model catalysts upon thermal annealing were followed by sum frequency generation (SFG) and temperature-programmed desorption (TPD) using CO as probe molecule. SFG experiments were performed both under ultrahigh vacuum and mbar pressure. Heating the catalyst to temperatures above 300 K lead to an irreversible 50% decrease in the CO adsorption capacity and modified the remaining adsorption sites. Alterations of the phase between resonant and non-resonant SFG signals upon annealing indicate a change in the electronic structure of the surface, which excludes Pd sintering or migration of Nb2O5 over Pd particles to cause the observed effect and rather suggests the formation of “mixed Pd-NbOx” sites. The same changes in surface properties also occur during CO hydrogenation at 1 bar and high temperature, pointing to an involvement of “mixed Pd-NbOx” sites in catalytic reactions.  相似文献   

8.
The adsorption of carbon monoxide is studied on Au/Pd(1 0 0) alloys by means of reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). The alloy was formed by adsorbing a four-monolayer thick gold film on a Pd(1 0 0) substrate and by heating to various temperatures to form alloys with a range of palladium coverages. The alloy was characterized using X-ray photoelectron spectroscopy and the composition of the outermost layer measured using low-energy ion scattering spectroscopy. CO adsorbs on palladium bridge sites only for palladium coverages greater than 0.5 monolayers (ML) suggesting that next-nearest neighbor sites are preferentially populated by palladium atoms. CO adsorbs on atop palladium sites and desorbs at ∼350 K corresponding to a desorption activation energy of ∼117 kJ/mol. However, at lower palladium coverages, these sites are not occupied and CO desorption states are detected 170 and 112 K corresponding to desorption activation energies of ∼53 kJ/mol and ∼35 kJ/mol, respectively, for these states. It is suggested that these states are due to a restructuring of the surface to form low-coordination gold sites that obscure the atop palladium site.  相似文献   

9.
CO-H interaction and H bulk dissolution on Pd(1 1 1) were studied by sum frequency generation (SFG) vibrational spectroscopy and density functional theory (DFT). The theoretical findings are particularly important to rationalize the experimentally observed mutual site blocking of CO and H and the effect of H dissolution on coadsorbate structures. Dissociative hydrogen adsorption on CO-precovered Pd(1 1 1) is impeded due to an activation barrier of ∼2.5 eV for a CO coverage of 0.75 ML, an effect which is maintained down to 0.33 ML CO. Preadsorbed hydrogen prevented CO adsorption at 100 K, while hydrogen was replaced from the surface by CO above 125 K. The temperature-dependent site blocking of hydrogen originates from the onset of hydrogen diffusion into the Pd bulk around 125 K, as shown by SFG and theoretical calculations using various approaches. When Pd(1 1 1) was exposed to 1:1 CO/H2 mixtures at 100 K, on-top CO was absent in the SFG spectra although hydrogen occupies only threefold hollow sites on Pd(1 1 1). DFT attributes the absence of on-top CO to H atoms diffusing between hollow sites via bridge sites, thereby destabilizing neighboring on-top CO molecules. According to the calculations, the stretching frequency of bridge-bonded CO with a neighboring bridge-bonded hydrogen atom is redshifted by 16 cm−1 when compared to bridging CO on the clean surface. Implications of the observed effects on hydrogenation reactions are discussed and compared to the C2H4-H coadsorption system.  相似文献   

10.
A thin and homogeneous alumina film was prepared by deposition and oxidation of aluminum on a refractory Re(0 0 0 1) substrate under ultrahigh vacuum conditions. X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron-energy-loss spectroscopy (HREELS) demonstrate that the oxide film is long-range ordered, essentially stoichiometric and free from surface hydroxyl groups. The chemisorption and thermal decomposition of Mo(CO)6 on the Al2O3 film were investigated by means of XPS and UPS. Mo(CO)6 adsorbs molecularly on the oxide film at 100 K; however, thermal decomposition of the adsorbate occurs upon annealing at high temperatures. Consequently the metallic molybdenum clusters are deposited on the thin alumina film via complete decarbonylation of Mo(CO)6.  相似文献   

11.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

12.
We investigated carbon monoxide (CO) adsorption and desorption behaviors on 0.1-nm-, 0.15-nm-, and 0.3-nm-thick-Pd-deposited Cu(1 1 0) surfaces using infrared reflection absorption (IRRAS) and temperature-programmed desorption (TPD) spectroscopic methods. CO was exposed to the 0.1-nm-thick-Pd/Cu(1 1 0) surface at the substrate temperature of 90 K. The IR band attributable to CO bonded to Cu atoms emerged at 2092 cm−1: the band was located at 2100 cm−1 at saturation coverage, with a shoulder at 2110 cm−1. In addition to these bands, weak absorptions attributable to the PdCO bonds appeared at 2050 and 1960 cm−1. With increasing Pd thickness, the Pd related-bands became increasingly prominent. Particularly at the early stage of exposure, the band at 2115 cm−1 became visible. The band at 2117 cm−1 dominated the spectra all through the exposures for the 0.3-nm-thick-Pd surface. The TPD spectra of the surfaces showed two remarkable features at around 220-250 and 320-390 K, ascribable ,respectively, to CuCO and PdCO. The desorption peaks shifted to higher temperatures with increasing Pd thickness. Based on the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the Pd/Cu(1 1 0) surfaces.  相似文献   

13.
The morphology of the palladium (Pd) overlayers on oxidized tungsten (W) tips has been studied by Field Emission Microscopy (FEM). The effect of thermal treatment on the interaction of Pd with the support and chemisorption of CO on variously treated Pd-containing samples has been investigated. The results are discussed in relation to complementary macroscopic experiments by synchrotron radiation excited photoelectron spectroscopy (SRPES) and thermally programmed desorption (TPD) of carbon monoxide (CO) on a polycrystalline W foil. A distinct influence of support pre-oxidation on the Pd layer growth has been demonstrated. Two types of oxidized supports have been used: tungsten with oxygen pre-adsorbed at room temperature (RT) and then heated to 700 K (WOx/W (RT) system) and tungsten oxidized at 1300 K (WOx/W (1300 K) system) in situ. The surface of WOx/W (1300 K) sample is fully oxidized in contrast to WOx/W (RT), where the presence of un-oxidized patches has been demonstrated by SRPES measurements. A Pd layer grows on the WOx/W (RT) surface mostly on the densely populated planes (1 1 0) and (2 1 1) of the W tip. Heating of this system up to 700 K results in disaggregation of the original Pd layer. Pd clusters on the tungsten tip oxidized at 1300 K are localized on the atomically rough (1 1 1) plane. The observed differences in CO adsorption on the aforementioned types of investigated samples can be attributed to differences in the chemical nature of their surfaces.  相似文献   

14.
To investigate the possibility of manipulating the surface chemical properties of finely dispersed metal films through ferroelectric polarization, the interaction of palladium with oppositely poled LiNbO3(0 0 0 1) substrates was characterized. Low energy ion scattering indicated that the Pd tended to form three-dimensional clusters on both positively and negatively poled substrates even at the lowest coverages. X-ray photoelectron spectroscopy (XPS) showed an upward shift in the binding energy of the Pd 3d core levels of 0.9 eV at the lowest Pd coverages, which slowly decayed toward the bulk value with increasing Pd coverage. These shifts were independent of the poling direction of the substrate and similar to those attributed to cluster size effects on inert supports. Thus, the spectroscopic data suggested that Pd does not interact strongly with LiNbO3 surfaces. The surface chemical properties of the Pd clusters were investigated using CO temperature programmed desorption. On both positively and negatively poled substrates, CO desorption from freshly deposited Pd showed a splitting of the broad 460 K desorption peak characteristic of bulk Pd into distinct peaks at 270 and 490 K as the Pd coverage was decreased below 1.0 ML; behavior that also resembles that seen on inert supports. It was found that a small fraction of the adsorbed CO may dissociate (<2%) for Pd on both positively and negatively poled substrates. The thermal response of the smaller Pd clusters on the LiNbO3 surfaces, however, was different from that of inert substrates. In a manner similar to Nb2O5, when CO desorption experiments were carried out a second time, the adsorption capacity decreased and the higher temperature desorption peak shifted from 490 K to below 450 K. This behavior was independent of the substrate poling direction. Thus, while there was evidence that LiNbO3 does not behave as a completely inert support, no significant differences between positively and negatively poled surfaces were observed. This lack of sensitivity of the surface properties of the Pd to the poling direction of the substrate is attributed to the three-dimensional Pd clusters being too thick for their surfaces to be influenced by the polarization of the underlying substrate.  相似文献   

15.
Adsorption of methanol on clean Pd(1 1 0) and on an alloyed Ag/Pd(1 1 0) surface has been studied by high-resolution photoelectron spectroscopy. On Pd(1 1 0) two different chemisorbed methanol species were observed for temperatures up to 200 K, with the one at lower binding energy remaining at low coverage. These species were attributed to methanol adsorbed in two different adsorption sites on the Pd(1 1 0) surface. As is well established for this system, heating to 250 K resulted in decomposition of methanol into CO. The adsorption and decomposition behaviour of methanol on the Ag/Pd(1 1 0) surface alloy formed by depositing Ag on Pd(1 1 0) at elevated temperature was similar to that of the pure Pd(1 1 0) surface. This suggests that the amount of Ag present in the Pd(1 1 0) surface in this study does not affect the decomposition behaviour of methanol as compared to pure Pd(1 1 0). Complementary density functional theory calculations also show little influence of Ag on the binding of methanol to Pd. These calculations predict an on-top adsorption site for low methanol coverages.  相似文献   

16.
Small bimetallic Pd-Fe particles supported on a well ordered alumina film grown on NiAl (1 1 0) were studied focusing on the geometric, electronic, adsorption, as well as magnetic properties. The morphology, growth mode and surface composition were investigated by combining scanning tunneling microscopy (STM), temperature-programmed desorption (TPD) and infrared spectroscopy (IRAS) using CO as a probe molecule. Information on the electronic properties of the bimetallic systems was obtained by means of X-ray photoelectron spectroscopy (XPS). These measurements were amended by in situ ferromagnetic resonance spectroscopy to address the magnetic properties of the bimetallic particles. The subsequent deposition of the metals at 300 K varying the order of metal deposition resulted in two distinct bimetallic systems. Pd deposited on existing Fe particles forms a shell, however, FMR and XPS suggest that intermixing of Pd and Fe occurs to some extent. For the reverse order, a larger amount of Fe is required to coat Pd particles, due to the strong tendency of Pd to segregate to the surface of the particles.  相似文献   

17.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

18.
The adsorption of Pd, Ag and Au atoms on a porous silica film on Mo(1 1 2) is investigated by scanning tunneling microscopy and density functional theory. While Pd atoms are able to penetrate the holes in the silica top-layer with virtually no barrier, Ag atoms experience an intermediate barrier value and Au atoms are completely unable to pass the oxide surface. The penetration probability does not correlate with the effective size of the atoms, but depends on their electronic structure. Whereas Pd with an unoccupied valence s-orbital has a low penetration barrier, Ag and Au atoms with occupied s-states experience a substantial repulsion with the filled oxide states, leading to a higher barrier for penetration. In the case of Ag, the barrier height can be temporally lowered by promoting the Ag 5s-electron into the support. The Mo-supported silica film can thus be considered as a primitive form of an atomic sieve whose selectivity is controlled by the electronic structure of the adatoms.  相似文献   

19.
The adsorption and thermal chemistry of γ-butyrolactone (GBL) on the (1 1 1) surface of Pd and Pt has been investigated using a combination of high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). HREELS results indicate that GBL adsorbs at 160 K on both surfaces through its oxygenate functionality. On Pd(1 1 1), adsorbed GBL undergoes ring-opening and decarbonylation by 273 K to produce adsorbed CO and surface hydrocarbon species. On Pt(1 1 1), very little dissociation is observed using HREELS, with almost all of the GBL simply desorbing. TPD results are consistent with decarbonylation and subsequent dehydrogenation reactions on Pd(1 1 1), although small amounts of CO2 are also detected. TPD results from Pt(1 1 1) indicate that a small proportion of adsorbed GBL (perhaps on defect sites) does undergo ring-opening to produce CO, CO2, and H2. These results suggest that the primary dissociation pathway for GBL on Pd(1 1 1) is through O-C scission at the carbonyl position. Through comparisons with previously published studies of cyclic oxygenates, these results also demonstrate how ring strain and functionality affect the ring-opening rate and mechanism.  相似文献   

20.
S. Pronkin 《Surface science》2004,573(1):109-127
Quasi-single crystalline gold films of 20 nm thickness and preferential (1 1 1) orientation on Si hemispheres were modified by controlled potentiostatic deposition of Pd (sub-ML, ML, multi-L) from sulphate and/or chloride-containing electrolyte. The electrochemical properties of these model electrodes were characterised for hydrogen and (hydrogen-) sulphate adsorption as well as for surface oxide formation by cyclic voltammetry. Conditions were developed to fabricate defined and stable Pd monolayers. In situ ATR-SEIRAS (Attenuated Total Reflection Surface Enhanced Infrared Reflection Absorption Spectroscopy) experiments were carried out to describe the electrochemical double layer of Pd modified gold film electrodes in contact with aqueous 0.1 M H2SO4 with focus on interfacial water and anion adsorption. Based on an analysis of the non-resonant IR background signal the potential of zero charge is estimated to 0.10-0.20 V (vs. RHE). CO was found to be weakly physisorbed in atop sites on Au(1 1 1-20 nm)/0.1 M H2SO4 only in CO saturated electrolyte. CO, deposited on a quasi-single crystal gold film modified with 1 ML Pd, is chemisorbed with preferential occupation of bridge sites and atop positions at step edges. Saturated CO adlayers, as obtained by deposition at 0.10 V, contain isolated water species and are covered by a second layer of hydrogen bonded water. Potentiodynamic SEIRAS experiments of CO electro-oxidation on Pd-modified gold film electrodes demonstrate clearly the existence of a “pre-oxidation” region. They also provide spectroscopic evidence that isolated water and weakly hydrogen bonded water are consumed during the reaction and that atop CO on defect sites is a preferential reactant. The simultaneous in situ monitoring of the potential- and time-dependent evolution of characteristic vibrational modes in the OH- and CO-stretching regions are in agreement with the Gilman (“reactant pair”) mechanism of CO oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号