首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a simple, rapid and sensitive sample pretreatment technique, dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in water and fruit juice samples. Parameters, affecting the DLLME performance such as the kind and volume of extraction and dispersive solvents, extraction time and salt concentration, were studied and optimized. Under the optimum extraction conditions (extraction solvent: tetrachloroethane, 15.0 μL; dispersive solvent: acetonitrile, 1.0 mL; no addition of salt and extraction time below 5 s), the performance of the proposed method was evaluated. The enrichment factors for the carbaryl and triazophos were 87.3 and 275.6, respectively. The linearity was obtained in the concentration range of 0.1-1000 ng mL−1 with correlation coefficients from 0.9991 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.3 to 16.0 pg mL−1. The relative standard deviations (RSDs, for 10 ng mL−1 of carbaryl and 20 ng mL−1 of triazophos) varied from 1.38% to 2.74% (n = 6). The environmental water (at the fortified level of 1.0 ng mL−1) and fruit juice samples (at the fortified level of 1.0 and 5.0 ng mL−1) were successfully analyzed by the proposed method, and the relative recoveries of them were in the range of 80.4-114.2%, 89.8-117.9% and 86.3-105.3%, respectively.  相似文献   

2.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

3.
This study established a flow injection (FI) methodology for the determination of the total phenolic content in plant-derived beverages based on soluble manganese(IV) chemiluminescence (CL) detection. It was found that mixing polyphenols with acidic soluble manganese(IV) in the presence of formaldehyde evoked chemiluminescence. Based on this finding, a new FI-CL method was developed for the estimation of the total content of phenolic compounds (expressed as milligrams of gallic acid equivalent per litre of drink) in a variety of wine, tea and fruit juice samples. The proposed method is sensitive with a detection limit of 0.02 ng mL−1 (gallic acid), offers a wide linear dynamic range (0.5-400 ng mL−1) and high sample throughput (247 samples h−1). The relative standard deviation for 15 measurements was 3.8% for 2 ng mL−1 and 0.45% for 10 ng mL−1 of gallic acid. Analysis of 36 different samples showed that the results obtained by the proposed FI-CL method correlate highly with those obtained by spectrophotometric methods commonly used for the evaluation of the total phenolic/antioxidant level. However, the FI-CL method was found to be far simpler, more rapid and selective, with almost no interference from non-phenolic components of the samples examined.  相似文献   

4.
In this paper a novel solid phase extraction method to determine Co(II) and Ni(II) using silica gel-polyethylene glycol (Silica-PEG) as a new adsorbent is described. The method is based on the adsorption of cobalt and nickel ions in alkaline media on polyethylene glycol-silica gel in a mini-column, elution with nitric acid and determination by flame atomic absorption spectrometry. The adsorption conditions such as NaOH concentration, sample volume and amount of adsorbent were optimized in order to achieve highest sensitivity. The calibration graph was linear in the range of 0.5-200.0 ng mL−1 for Co(II) and 2.0-100.0 ng mL−1 for Ni(II) in the initial solution. The limit of detection based on 3Sb was 0.37 ng mL−1 for Co(II) and 0.71 ng mL−1 for Ni(II). The relative standard deviations (R.S.D.) for ten replicate measurements of 40 ng mL−1 of Co(II), and Ni(II) were 3.24 and 3.13%, respectively. The method was applied to determine Co(II) and Ni(II) in black tea, rice flour, sesame seeds, tap water and river water samples.  相似文献   

5.
Determination of estrogens in water by HPLC-UV using cloud point extraction   总被引:1,自引:0,他引:1  
Wang L  Cai YQ  He B  Yuan CG  Shen DZ  Shao J  Jiang GB 《Talanta》2006,70(1):47-51
A method based on cloud point extraction was developed to determine four kinds of estrogens: estriol (E3), estradiol (E2), estrone (E1), and progesterone (P) in water by high performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extractant solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, preconcentration factors of 99 for E3, 73 for E2, 152 for E1 and 86 for P were obtained for 10 mL water sample. The detection of limitation was 0.23 ng mL−1 for E3, 0.32 ng mL−1 for E2, 0.25 ng mL−1 for E1 and 5.0 ng mL−1 for P. The proposed method was successfully applied to the determination of trace amount of estrogens in wastewater treatment plant (WWTP) effluent water and exposure water with 10 ng mL−1 E2 for toxicological study in our lab. For the case of WWTP effluent water samples, no estrogen was found. The accuracy of the proposed method was tested by recovery measurements of spiked samples and good recoveries of 81.2-99.5% were obtained.  相似文献   

6.
Fong BM  Tam S  Tsui SH  Leung KS 《Talanta》2011,83(3):1030-1036
A sensitive analytical method for the determination of tetrodotoxin (TTX) in urine and plasma matrices was developed using double solid phase extraction (C18 and hydrophilic interaction liquid chromatography) and subsequent analysis by HPLC coupled with tandem mass spectrometry. The double SPE sample cleanup efficiently reduced matrix and ion suppression effects. Together with the use of ion pair reagent in the mobile phase, isocratic elution became possible which enabled a shorter analysis time of 5.5 min per sample. The assay results were linear up to 500 ng mL−1 for urine and 20 ng mL−1 for plasma. The limit of detection and limit of quantification were 0.13 ng mL−1 and 2.5 ng mL−1, respectively, for both biological matrices. Recoveries were in the range of 75-81%. To eliminate the effect of dehydration and variations in urinary output, urinary creatinine-adjustment was made. TTX was quantified in eight urine samples and seven plasma samples from eight patients suspected of having TTX poisoning. TTX was detected in all urine samples, with concentrations ranging from 17.6 to 460.5 ng mL−1, but was not detected in any of the plasma samples. The creatinine-adjusted TTX concentration in urine (ranging from 7.4 to 41.1 ng μmol−1 creatinine) correlated well with the degree of poisoning as observed from clinical symptoms.  相似文献   

7.
Maleki N  Safavi A  Doroodmand MM 《Talanta》2005,66(4):858-862
A hydride generation method for the determination of traces of selenium at ng mL−1 concentration ranges has been introduced using a solid mixture of tartaric acid and sodium tetrahydroborate. Atomic absorption spectrometry (AAS) has been used as the detection system. Several parameters such as the ratio of tartaric acid to sodium tetrahydroborate, type and amount of acid, and the reaction temperature were optimized by using 640 ng mL−1 (16 ng per 25 μL) of Se(IV) standard solution. The calibration curve was linear from 20 to 1200 ng mL−1 (0.5-30 ng Se(IV) per 25 μL). The relative standard deviation (%R.S.D.) of the determination was 1.93% and the detection limit was 10.6 ng mL−1 (265 pg per 25 μL) of Se(IV). The reliability of the method was checked using different types of environmental samples, such as several types of water, a sample of soil and also in a kind of calcium phosphate sample by standard addition method. For conversion of Se(VI) present in real samples to Se(IV), l-cysteine was added to NaBH4 and tartaric acid mixture. The results showed good agreement between this method and other hydride generation techniques.  相似文献   

8.
Organophosphate triesters are common flame retardants used in a wide variety of consumer products from which they can migrate and pollute the indoor environment. Humans may thus be continuously exposed to several organophosphate triesters which might be a risk for human health. An analytical method based on direct injection of 5 μL urine into an ultra performance liquid chromatography system coupled to a time-of-flight mass spectrometry has been developed and validated to monitor exposure to organophosphate triesters through their respective dialkyl and diaryl phosphate metabolites (DAPs). The targeted analytes were: di-n-butyl phosphate (DNBP), diphenyl phosphate (DPHP), bis(2-butoxyethyl) phosphate (BBOEP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCPP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). Separation was achieved in less than 3 min on a short column with narrow diameter and small particle size (50 mm × 2.1 mm × 1.7 μm). Different mobile phases were explored to obtain optimal sensitivity. Acetonitrile/water buffered with 5 mM of ammonium hydroxide/ammonium formate (pH 9.2) was the preferred mobile phase. Quantification of DAPs was performed using deuterated analogues as internal standards in synthetic urine (averaged DAP accuracy was 101%; RSD 3%). Low method limits of quantification (MLQ) were obtained for DNBP (0.40 ng mL−1), DPHP (0.10 ng mL−1), BDCIPP (0.40 ng mL−1) and BBOEP (0.60 ng mL−1), but not for the most polar DAPs, BCEP (∼12 ng mL−1) and BCPP (∼25 ng mL−1). The feasibility of the method was tested on 84 morning urine samples from 42 mother and child pairs. Only DPHP was found above the MLQ in the urine samples with geometric mean (GM) concentrations of 1.1 ng mL−1 and 0.57 ng mL−1 for mothers and children respectively. BDCIPP was however, detected above the method limit of detection (MLD) with GM of 0.13 ng mL−1 and 0.20 ng mL−1. While occasionally detected, the GM of DNBP and BBOEP were below MLD in both groups.  相似文献   

9.
A novel bare-eye based one-step signal amplified semi-quantitative immunochromatographic assay (SAS-ICA) was developed for detection of the pesticide imidacloprid. This method was based on competitive immunoreactions. Signal amplification was achieved by dual labeling of the test lines (TLs) on the strip using high affinity nanogold-biotinylated anti-imidacloprid mAb (BAb) and nanogold-streptavidin (Sa) probes. The relative color intensities of three TLs (TL-I, TL-II and TL-III) on a nitrocellulose (NC) membrane were used for direct visual analysis of the SAS-ICA strips, and could be used for semi-quantitation of analyte concentrations by observing what TLs disappeared in the amplification zone. Under optimized conditions, the following imidacloprid concentration ranges would be detected by visual examination of the SAS-ICA strip: 0–5 ng mL−1 (negative samples), and 5–25 ng mL−1, 25–250 ng mL−1, 250–1000 ng mL−1 and >1000 ng mL−1 (positive samples). The sensitivity (the visual detection limit (VDL) of TL-III) and semi-quantitative analytical capacity (when TL-III disappeared completely) of the SAS-ICA strip were 10-fold and 160-fold higher than those of traditional ICA, respectively. The developed SAS-ICA strip was applied to the analysis of spiked and authentic contaminated Chinese cabbage samples in the laboratory and under field conditions, and the results were validated by high-performance liquid chromatography (HPLC). This process could be adopted as a potential generous technique for all ICA-based detection methods.  相似文献   

10.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

11.
A one-step immunochromatographic assay (ICA) was developed for the detection of seven kinds of cephems in milk. Polyclonal antibodies (PcAb) with group-specific to cephems were raised in rabbits after immunization with cephalexin-keyhole limpet hemocyanin (KLH) conjugate. The specificity of anti-sera was determined by indirect competitive enzyme-linked immunosorbent assay (icELISA), and the 50% inhibitions (IC50) of cephalexin and cefadroxil were obtained at 1.5 ng mL−1; IC50 of cefatiofur, cefapirin, cefazolin, cefalothin and cefotaxine were 4, 3.7, 3.2, 4.5 and 5 ng mL−1, respectively. The PcAb against cephems were conjugated to colloidal gold particles as the detection reagent for ICA strips to test for cephems. This method achieved semi-quantitative detection of cephems in <5 min, with high sensitivity to cephalexin and cefadroxil (both 0.5 ng mL−1). At the same time, cefatiofur, cefapirin, cefazolin, cefalothin and cefotaxine were detected at <100 ng mL−1 in spiked processed-milk samples. This method was compared with an enzyme-linked immunosorbent assay by testing 40 milk samples, and the positive samples were validated by a high-performance liquid chromatographic method, with an agreement rate of 100% for both comparisons. In conclusion, the method was rapid and accurate for the multi-residue detection of cephems in milk.  相似文献   

12.
A new procedure was described with multiwalled carbon nanotubes as solid phase extraction packing material for the trace analysis of nicosulfuron, thifensulfuron and metsulfuron-methyl in water samples. The possible parameters influencing the enrichment were optimized and the optimal conditions were as followed: eluent, sample pH, flow rate and sample volume were acetonitrile containing 1% acetic acid, pH 3, 8 mL min−1 and 500 mL, respectively. Under the optimal chromatographic separation and SPE conditions, the linear range, detection limit (S/N = 3) and precision (R.S.D., n = 6) were 0.04-40 ng mL−1, 6.8 ng L−1 and 2.5% for nicosulfuron, 0.04-40 ng mL−1, 11.2 ng L−1 and 5.4% for thifensulfuron, 0.02-20 ng mL−1, 5.9 ng L−1, 2.1% for metsulfuron-methyl, respectively. The established method was well employed to determine nicosulfuron, thifensulfuron and metsulfuron-methyl in tap water, seawater, reservoir water and well water samples, and satisfactory results were obtained, the spiked recoveries in the range of 87.2-100.7%, 96.5-105.6% and 83.7-111.1% for them each, respectively.  相似文献   

13.
A simple extraction method for the analysis of PGE2 and PGF in gonad samples from Atlantic cod and further quantification by using liquid chromatography–tandem mass spectrometry is proposed. The evaluation of the best solvent extraction conditions and the analytical performance parameters are reported. The method was highly selective for both prostaglandins and the calibration curves, based on the internal standard method, were linear between 5 and 1000 ng mL−1 for PGE2 and PGF, with limits of detection of 1 ng mL−1 and 1.5 ng mL−1 and recovery values of 99.999 ± 0.002 and 99.967 ± 0.023 respectively. The homogenization of samples using liquid nitrogen combined with the developed extraction protocol can be implemented in different types of biological tissues.  相似文献   

14.
In this research, a novel stacking capillary electrophoresis method, repetitive large volume sample injection and sweeping MEKC (rLVSI-sweeping MEKC) were developed to analyze the presence of three androgenic steroids considered as sport doping drugs, testosterone (T), epitestosterone (E) and epitestosterone glucuronide (EG) in urine. This method provides better sensitivity enhancement than the traditional large volume sample stacking-sweeping strategies due to sensitivity enhancement by repetitive injections. This multiple sampling method enhances sensitivity of monitoring of urine samples by UV detection (254 nm). Firstly, the phosphate buffer was filled into an uncoated fused silica capillary and the samples were injected into the capillary at 10 psi for 20 s, and then stacked at −10 kV for 1 min using phosphate buffer containing SDS. The above injecting and stacking steps were repeated five times. Finally, separation was performed at −20 kV, using phosphate buffer containing methanol, SDS and (2-hydroxypropyl)-β-cyclodextrin. Method validation showed that calibration plots were linear (r ≧ 0.997) over a range of 5-200 ng mL−1 for T, 20-200 ng mL−1 for E and 0.5-500 ng mL−1 for EG. The limits of detection were 1.0 ng mL−1 for T, 5.0 ng mL−1 for E and 200.0 pg mL−1 for EG. When evaluating precision and accuracy, values of RSD and RE in intra-day (n = 3) and inter-day (n = 5) analysis were found to be less than 10.0%. Compared with the simple LVSS-sweeping, which is also a stacking strategy, this method further improves sensitivity up to 25 folds (∼2500 folds with MEKC without preconcentration). This method was applied to monitor 10 athletes’ urine, and did not detect any analyte. The novel stacking method was feasible for monitoring of doping by sportsmen.  相似文献   

15.
A simple, rapid and sensitive high-performance liquid chromatography method was developed for the analysis of the sesquiterpene lactone 15-deoxygoyazensolide (LAC15-D) in rat plasma samples. The chromatographic separation was achieved on a LiChrospher® RP18 column using methanol:water (50:50, v/v) containing 0.6% acetic acid as mobile phase, at a flow rate of 0.7 mL min−1. UV detection was carried out at 270 nm. Phenytoin was used as internal standard. Prior to the analysis, the rat plasma samples were submitted to liquid-liquid extraction with dichloromethane. The mean absolute recoveries were 73% with R.S.D. values lower than 3.5. The method was linear over the 6.0-2000 ng mL−1 concentration range and the quantification limit was 6.0 ng mL−1. Within-day and between-day assay precision and accuracy were studied at three concentration levels (15, 300 and 480 ng mL−1) and were lower than 15%. The validated method was used to measure the plasmatic concentration of LAC15-D in rats that received a single intraperitoneal dose of 30 mg kg−1.  相似文献   

16.
An isocratic high-performance liquid chromatographic method has been developed for the measurement of serotonin, 5-hydroxyindolacetic and homovanillic acids in dried blood spots and in platelet poor and rich plasma samples. Analyses were carried out on a C18 reversed-phase column using a mobile phase composed of 13% methanol and 87% aqueous citrate buffer, containing octanesulfonic and ethylendiaminotetracetic acids. Coulometric detection was used, setting the guard cell at +0.100 V, the first analytical cell at −0.200 V and the second analytical cell at +0.400 V. For the pre-treatment of biological samples a novel solid-phase extraction procedure, based on mixed-mode reversed-phase – strong anion exchange Oasis cartridges, was implemented. Extraction yields of the analytes from all these matrices were satisfactory, being always higher than 89.0%. The calibration curve was linear over the on-column concentration range of 0.1–22.5 ng mL−1 for serotonin and 5-hydroxyindolacetic acid and of 0.25–22.5 ng mL−1 for homovanillic acid. The sensitivity was good with a limit of detection of 0.05 ng mL−1 for serotonin and 5-hydroxyindolacetic acid and 0.12 ng mL−1 for homovanillic acid. Results were also satisfactory in terms of precision, selectivity and accuracy. The analytical method was successfully applied to human platelet poor and rich plasma samples and to dried blood spots from volunteers and psychiatric patients.  相似文献   

17.
Yanyan Lu  Zhi Xing  Po Cao  Xinrong Zhang 《Talanta》2009,78(3):869-1801
A sandwich-type immunoassay linked with inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the detection of anti-erythropoietin antibodies (anti-EPO Abs). Recombinant human erythropoietin (rhEPO) was immobilized on the solid phase to capture anti-rhEPO Abs specifically. After the immunoreactions with Au-labeled goat-anti-rabbit IgG, a diluted HNO3 (2%) was used to dissociate Au nanoparticles which was then introduced to the ICP-MS for measurements. Under the optimized conditions, the calibration graph for anti-EPO Abs was linear in the range of 35.6-500 ng mL−1 with a detection limit of 10.7 ng mL−1 (3σ, n = 9). The relative standard deviation (R.S.D.) for three replicate measurements of 30.9 ng mL−1 of anti-EPO Abs was 8.43%. The recoveries of anti-EPO Abs in sera at the spiking level of 50, 100, 150, 200 and 400 ng mL−1 were 99.2%, 101.5%, 95.0%, 94.0% and 102.9%, respectively. For the real sample analysis, 26 samples from healthy people and 53 samples from patients with rhEPO treatments were studied. One sample from patients showed significantly higher anti-EPO Abs from other samples, indicating a possibility of immune response of this patient.  相似文献   

18.
An integrated method of liquid chromatography-heated electrospray ionization/tandem mass spectrometry was evaluated for high throughput screening of various abused drugs in urine. Chromatographic analysis was performed on a C18 reverse phase column using a linear gradient of 10 mM ammonium acetate containing 0.1% formic acid-methanol as mobile phase and the total separation time was 7 min. A simple and rapid sample preparation method used was by passing urine samples through a 0.22 μm PVDF syringe filter. The detection limits of the studied abused drugs in urine were from 0.6 ng mL−1 (ketamine) to 9.0 ng mL−1 (norcodeine). According to the results, the linear range was from 1 to 1200 ng mL−1 with relative standard deviation (R.S.D.s) value below 14.8% (intra-day) and 24.6% (inter-day). The feasibility of applying the proposed method to determine various abused drugs in real samples was examined by analyzing urine samples from drug-abused suspects. The abused drugs including ketamines and amphetamines were detected in suspected urine samples. The results demonstrate the suitability of LC-HESI-MS/MS for high throughput screening of the various abused drugs in urine.  相似文献   

19.
Fragrance suspected allergens including those regulated by the EU Directive 76/768/EEC have been determined in different types of waters using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The procedure was based on headspace sampling (HS-SPME) using polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers and has been optimized by an experimental design approach. The method performance has been studied showing good linearity (R ≥ 0.994) as well as good intra-day and inter-day precision (RSD ≤ 12%). Detection limits (S/N = 3) ranged from 0.001 to 0.3 ng mL−1. Reliability was demonstrated through the quantitative recoveries of the compounds in real water samples, including baby bathwaters, swimming pool waters, and wastewaters. The absence of matrix effects allowed quantification of the compounds by external aqueous calibration. The analysis of 35 samples of different types of waters showed the presence of suspected allergens in all the analyzed samples. All targets were found in the samples, with the exception of methyl eugenol and amyl cinnamic alcohol. Highest concentrations of suspected allergens were present in baby bathwaters, containing from 5 to 15 of the compounds at concentrations ranging from few pg mL−1 to several hundreds of ng mL−1.  相似文献   

20.
A simple and rapid method based on solid-phase micro extraction (SPME) technique followed by gas chromatography-mass spectrometry with selected ion monitoring (GC-MS, SIM) was developed by the simultaneous determination of 16 pesticides of seven different chemical groups [Six organophosphorus (trichlorfon, diazinon, methyl parathion, malathion, fenthion and ethyon), three pyrethroids (bifenhin, permethrin, cypermethrin), two imidazoles (imazalil and prochloraz), two strobilurins (azoxystrobin and pyraclostrobin), one carbamate (carbofuran), one tetrazine (clofentezine), and one triazole (difenoconazole)] in water. The pesticides extraction was done with direct immersion mode (DI-SPME) of the polyacrilate fiber (PA 85 µm). The extraction temperature was adjusted to 50 °C during 30 min, while stirring at 250 rpm was applied. After extraction, the fiber was introduced in the GC injector for thermal desorption for 5 min. at 280 °C. The method was validated using ultra pure water samples fortified with pesticides at different concentration levels and shows good linearity in the concentrations between 0.05 and 250.00 ng mL− 1. The LOD and LOQ ranged, from 0.02 to 0.30 ng mL− 1 and 0.05 to 1.00 ng mL− 1, respectively. Intra-day and inter-day precisions were determined in two concentration levels (5.00 and 50.00 ng mL− 1). Intra-day relative standard deviation (%R.S.D.) ranged between 3.6 and 13.6%, and inter-day (%R.S.D.) ranged between 6.3 and 18.5%. Relative recovery tests were carried out spiking the ultra pure sample with standards in three different concentration levels 0.20, 5.00 and 50.00 ng mL− 1. The recovery at 0.20 ng mL− 1 level varied from 86.4 ± 9.4% to 108.5 ± 10.5%, at 5.00 ng mL− 1 level varied from 77.5 ± 10.8% to 104.6 ± 9.6% and at 50.00 ng mL− 1 level varied from 70.2 ± 4.6% to 98.4 ± 8.5%. The proposed SPME method was applied in twenty-six water samples collected in the “Platô de Neópolis”, State of Sergipe, Brazil. Methyl parathion was detected in five samples with an average concentration of 0.17 ng mL− 1 and bifenthrin, pyraclostrobin and azoxystrobin residues were found in three samples with average concentrations of 2.28, 3.12 and 0.15 ng mL− 1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号