首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the determination of trace Co(II) by adsorptive stripping voltammetry on disposable three-electrode cells with on-chip metal-film electrodes. The heart of the sensors was a bismuth-film electrode (BiFE) with Ag and Pt planar strips serving as the reference and counter electrodes, respectively. Metals were deposited on a silicon chip by sputtering while the areas of the electrodes were patterned via a metal mask. Co(II) was determined by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3σ limit of detection was 0.09 μg l−1 of Co(II) (for 90 s of preconcentration) and the relative standard deviation for Co(II) was 3.8% at the 2 μg l−1 level (n = 8). The method was applied to the determination of Co(II) in a certified river water sample. These mercury-free electrochemical devices present increased scope for field analysis and μ-TAS applications.  相似文献   

2.
A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of −1.10 V versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of 10-100 μg L−1 of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and 6.9 μg L−1 of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of 25 μg L−1 Cd(II) and 25 μg L−1 Pb(II), respectively. A sample throughput of 12 h−1 was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.  相似文献   

3.
In this work, we describe an automated stripping analyzer operating on a hybrid flow-injection/sequential-injection (FIA/SIA) mode and utilizing a bismuth-film electrode (BiFE) as a flow-through sensor for on-line stripping voltammetry of trace metals. The instrument combines the advantages of FIA and SIA and is characterised by simplicity, low-cost, rapidity, versatility and low consumption of solutions. The proposed analytical flow methodology was applied to the determination of Cd(II) and Pb(II) by anodic stripping voltammetry (ASV) and of Ni(II) and Co(II) by adsorptive stripping voltammetry (AdSV). The steps of the rather complex experimental sequence (i.e. the bismuth-film formation, the analyte accumulation, the voltammetric stripping and the electrode cleaning/regeneration) were conducted on-line and the critical parameters related to the respective analytical procedures were investigated. In ASV, for a accumulation time of 180 s the limits of detection for Cd(II) and Pb(II) were 2 and 1 μg l−1, respectively (S/N = 3) and the relative standard deviations were 5.3% and 4.7%, respectively (n = 8). In AdSV, for a total sample volume of 1000 μl, the limits of detection for Ni(II) and Co(II) were 1 μg l−1 (S/N = 3) and the relative standard deviations were 5.5% and 6.2%, respectively (n = 8). The measurement frequency ranged between 15 and 20 stripping cycles h−1. The results indicate that the BiFE is well suited as a flow-through detector for on-line stripping analysis and, by virtue of its low toxicity, can serve as a viable alternative to mercury-based flow-through electrodes.  相似文献   

4.
This paper describes the fabrication, characterisation and the application of a Nafion/2,2′-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn2+, Cd2+ and Pb2+). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2′-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at −1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2′-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm−3) for Zn2+, 1.1 nM (0.12 μg dm−3) for Cd2+ and 0.37 nM (0.077 μg dm−3) for Pb2+. For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique.  相似文献   

5.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

6.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

7.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

8.
A highly sensitive adsorptive stripping voltammetric protocol for measuring trace beryllium, in which the preconcentration is achieved by adsorption of the beryllium-arsenazo-I complex at a preplated mercury-coated carbon-fiber electrode, is described. Optimal conditions were found to be a 0.05 M ammonium buffer (pH 9.7) containing 5 μM arsenazo-I, an accumulation potential of 0.0 V (versus Ag/AgCl) and a square-wave voltammetric scan. The new procedure obviates the need for renewable mercury-drop electrodes used in early stripping protocols for beryllium. A linear response is observed over the 10-60 μg l−1 concentration range (90 s accumulation), along with a detection limit of 0.25 μg l−1 beryllium (10 min accumulation). A 15-s electrochemical cleaning enables the same mercury film to be used for a prolonged operation. High stability is thus indicated from the reproducible response of a 100 μg l−1 beryllium solution (n = 60; RSD = 3.3%) over a 2.5-h operation. Applicability to a seawater sample is illustrated. The attractive behavior of the new sensor holds great promise for on-site environmental and industrial monitoring of beryllium. Preliminary data in this direction using mercury-coated screen-printed electrodes are encouraging.  相似文献   

9.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

10.
This works reports the use of square-wave adsorptive stripping voltammetry (SWAdSV) for the simultaneous determination of Ni(II) and Co(II) on a rotating-disc bismuth-film electrode (BFE). The metal ions in the non-deoxygenated sample were complexed with dimethylglyoxime (DMG) and the complexes were accumulated by adsorption on the surface of the BFE. The stripping step was carried out by using a square-wave potential-time voltammetric excitation signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements. The experimental variables (choice of the working electrode substrate, the presence of oxygen, the DMG concentration, the buffer concentration, the preconcentration potential, the accumulation time, the rotation speed and the SW parameters) as well as potential interferences were investigated and the figures of merit of the methods were established. Using the selected conditions, the 3σ limits of detection were 70 ng l−1 for Co(II) and 100 ng l−1 for Ni(II) (for 300 s of preconcentration) and the relative standard deviations were 2.3% for Co(II) and 3.9% for Ni(II) at the 2 μg l−1 level (n = 8). Finally, the method was applied to the determination of nickel and cobalt in real samples with satisfactory results.  相似文献   

11.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

12.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

13.
This work exploited a sequential injection lab-on-valve (LOV) system for the determination of cadmium by anodic stripping voltammetry (ASV). A miniaturized electrochemical flow cell (EFC) was fabricated in LOV, in which a nafion coated bismuth film electrode was used as working electrode. The cadmium was electrodeposited on the electrode surface in bismuth solution, and measured with the subsequential stripping scan. Under optimal conditions, the proposed system responded linearly to cadmium concentrations in a range 2.0-100.0 μg L−1. The detection limit of this method was found to be 0.88 μg L−1. By loading a sample volume of 800 μL, a sampling frequency of 22 determinations h−1 was achieved. The repeatability expressed as relative standard derivation (R.S.D.) was 3.65% for 20 μg L−1 cadmium (n = 11). The established method was applied to analysis of trace cadmium in environmental water samples and the spiked recoveries were satisfactory.  相似文献   

14.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

15.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

16.
A sensitive anodic stripping voltammetric procedure at the bismuth film electrode (BFE) for trace analysis of copper (II) in the presence of gallium is presented. The new protocol circumvents the problems of overlapping stripping signals between copper and bismuth that previously hampered the analysis of copper at the BFE. The results illustrate that the addition of gallium not only improves the reproducibility of the bismuth stripping signal but also facilitates much improved resolution between the stripping signals of bismuth and copper. Investigations into the effect of gallium on the stripping response of copper and bismuth were studied showing a 4:1 gallium:copper mole ratio produces optimum signals from bismuth and copper indicating a possible stoichiometric relationship. Optimisation of other key variables including electrolyte composition, accumulation parameters and appropriate waveform settings were studied and optimised. The optimised procedures show a range of linear calibration plots (R2 > 0.994) ranging from 2 to 500 μg L−1 and the relative standard deviation for a solution containing 100 μg L−1 copper was 3.7% (n = 10). Utilising an accumulation time of 300 s the limit of detection was 1.4 μg L−1 (S/N = 3). This technique was successfully applied to the analysis of copper in tap water representing the first successful copper determination in real samples using the BFE.  相似文献   

17.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

18.
Potentiometric stripping analysis (PSA) was investigated to assay simultaneously cadmium, lead and thallium present as contaminants in highly saline solutions used in hemodialysis. The saline matrices were sodium, potassium, magnesium and calcium chlorides, sodium acetate, sodium bicarbonate and glucose, which constitute concentrates for hemodialysis. A 1000 μg mL−1 Hg(II) solution was used to prepare the mercury film electrode (MFE) and to carry out the stripping step. After a 30 s accumulation interval the analytes were simultaneously detected in the saline matrices without using masking agents. Determination limits of 80 ng L−1 for cadmium and thallium, and 50 ng L−1 for lead were calculated and a R.S.D. ranging from 0.5 to 2.2% (n = 3) was obtained measuring the analytes directly in commercial hemodialysis saline solutions. Recoveries from spiked samples ranging from 94.6 to 102.0% were obtained. The investigated metals were found in concentrations ranging from 2.7 to 5.7 μg L−1 for cadmium, 27.7 to 75.8 μ L−1 for lead and 9.6 to 18.7 μg L−1 for thallium in commercial hemodialysis solutions. The PSA method showed to be adequate to the quality control of saline concentrates for hemodialysis.  相似文献   

19.
This study presents a new procedure for the determination of trace levels of copper(II) in an aqueous matrix, through flow injection (FI) on-line preconcentration with a minicolumn packed with silica gel modified with 3(1-imidazolyl)propyl groups. After the preconcentration stage, the analyte was eluted with a HNO3 solution and determined by flame atomic absorption spectrometry (FAAS). The measurements of the analytical signals were carried out as peak area and peak height with the objective of evaluating the most appropriate absorption measurement for the proposed method. Four procedures to calculate the experimental enrichment factor (EF) were also studied. For a preconcentration time of 90 s the enrichment factors found in this study varied between 19.5-25.8 and 36.2-42.2 for peak area and peak height, respectively. The precision of the proposed method was calculated for a solution containing 20 μg l−1 of Cu(II), when 11.2 ml of solution was preconcentrated (n=7), and their respective relative standard deviation (R.S.D.) values were 1.2 and 1.4% for peak area and peak height, respectively. The detection limits obtained were 0.4 and 0.2 μg l−1 of Cu(II) for peak area and peak height, respectively, with a preconcentration time of 90 s. The on-line preconcentration system accuracy was evaluated through a recovery test on the aqueous samples and analysis of a certified material.  相似文献   

20.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号