首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indirect voltammetric method is described for determination of cyanide ions and hydrogen cyanide, using the effect of cyanide on cathodic adsorptive stripping peak height of Cu-adenine. The method is based on competitive Cu complex formation reaction between adenine at the electrode surface and CN ions in solution. Under the optimum experimental conditions (pH=6.42 Britton-Robinson buffer, 1×10−4 M copper and 8×10−7 M adenine), the linear decrease of the peak current of Cu-adenine was observed, when the cyanide concentration was increased from 5×10−8 to 8×10−7 M. The detection limit was obtained as 1×10−8 M for 60 s accumulation time. The relative standard deviations for six measurements were 4 and 2% for the cyanide concentrations of 5×10−8 and 2×10−7 M, respectively. The method was applied to the determination of cyanide in various industrial waste waters such as electroplating waste water and also for determination of hydrogen cyanide in air samples.  相似文献   

2.
The adsorptive and electrochemical behaviors of medecamycin were investigated on a glassy carbon electrode (GCE) pretreated by anodic oxidation at +1.8 V for 5 min in 0.025 mol l–1 NH3-NH4Cl (pH 8.6) solution. An adsorptive stripping voltammetric method for the determination of medecamycin at the pretreated glassy carbon electrode has been developed. Medecamycin was accumulated in NH3-NH4Cl buffer (pH 9.0) at a potential of –0.7 V (vs. saturated calomel electrode (SCE)) for a certain time, and then determined by second-order differential anodic stripping voltammetry. The second-order differential anodic stripping peak current at +0.72 V was proportional to the concentration of medecamycin in the range 2.0 g ml–1 to 50.0 g ml–1. The detection limit (three times the signal-to-noise) was 1.0 g ml–1 and the relative standard deviation of the results was 3.28% for eight successive determinations of 10.0 g ml–1 medecamycin. This method has been applied to the direct determination of medecamycin in commercial tablets and spiked urine samples with satisfactory results.  相似文献   

3.
Square-wave adsorptive stripping voltammetry technique was used to determine rosiglitazone (ROS) on the hanging mercury dropping electrode (HMDE) surface, in Britton Robinson buffer, pH = 5. The voltammetric cathodic peak was observed at ?1520 mV vs. Ag/AgCl reference electrode. The voltammetric peak response was characterized with respect to pH, supporting electrolyte, accumulation potential, preconcentration time, scan rate, frequency, pulse amplitude, surface area of the working electrode and the convection rate. Under optimal conditions, the voltammetric current is proportional to the concentration of ROS over the concentration range of 5 × 10?8–8 × 10?7 mol l?1 (r = 0.9899) with a detection limit of 3.2 × 10?11 mol l?1 using 120 s accumulation time. The developed SW-AdSV procedure showed a good reproducibility, the relative standard deviation RSD% (n = 10) at a concentration level of 5 × 10?7 mol l?1 was 0.33%, whereas the accuracy was 101% ± 1.0. The proposed method was successfully applied to assay the drug in the human urine and plasma samples with mean recoveries of 90 ± 0.71% and 86 ± 1.0%, respectively.  相似文献   

4.
Lutetium has been determined by differential pulse anodic stripping voltammetry in an acidic solution containing Zn-EDTA. Lutetium (III) ions liberated zinc (II), which was preconcentrated on a hanging mercury drop electrode and stripped anodically, resulting in peak current linearly dependent on lutetium (III) concentration. Less than 0.4 ng mL−1 lutetium could be detected after a 2 min deposition.   相似文献   

5.
A procedure for the determination of gallium by differential pulse adsorptive stripping voltammetry (DPADSV), using different complexing agents (ammonium pyrrolidine dithiocarbamate (APDC), pyrocatechol violet (PCV) and diethyldithiocarbamate (DDTC)), has been optimized. The selection of the experimental conditions was made using experimental design methodology. Under these conditions, the calibration was made and the detection limit was determined for each gallium-ligand complex. A robust regression method was applied which allowed the elimination of anomalous points. The detection limit, with α=β=0.05, for gallium-APDC complex was 5.0×10−8 mol dm−3, for gallium-PCV complex was 9.9×10−9 mol dm−3, and the lowest detection limit (1.3×10−9 mol dm−3) was obtained with DDTC. For this reason, DDTC was selected for the determination of the gallium concentration in a certificate sample and in a spiked tap water sample. The linear dynamic range for gallium-APDC complex was from 5.0×10−8 to 2.7×10−7 mol dm−3, for gallium-PCV complex was from 5.0×10−9 to 4.8×10−7 mol dm−3, and for gallium-DDTC complex was from 1.0×10−9 to 2.1×10−7 mol dm−3.  相似文献   

6.
Lin L  Lawrence NS  Thongngamdee S  Wang J  Lin Y 《Talanta》2005,65(1):144-148
A sensitive adsorptive stripping voltammetric protocol at a bismuth-coated glassy-carbon electrode for trace measurements of chromium (VI) in the presence of diethylenetriammine pentaacetic acid (DTPA) is described. The new protocol is based on accumulation of the Cr-DTPA complex at a preplated bismuth film electrode held at −0.80 V, followed by a negatively-going square-wave voltammetric waveform. Factors influencing the stripping performance including the film preparation, solution pH, DTPA and nitrate concentrations, deposition potential and deposition time, have been optimized. The resulting performance compares well with that observed for analogous measurements at mercury film electrodes. A preconcentration time of 7 min results in a detection limit of 0.3 nM Cr(VI) and after 2 min a relative standard deviation at 20 nM of 5.1% (n = 25). Applicability to river water samples is demonstrated. The attractive behavior of the new “mercury-free” chromium sensor holds great promise for on-site environmental and industrial monitoring of chromium (VI). Preliminary data in this direction using bismuth-coated screen-printed electrodes are encouraging.  相似文献   

7.
Kefala G  Economou A  Sofoniou M 《Talanta》2006,68(3):1013-1019
This work reports the use of adsorptive stripping voltammetry (AdSV) for the determination of aluminium on a rotating-disc bismuth-film electrode (BiFE). Al(III) ions in the non-deoxygenated sample were complexed with cupferron and the complex was accumulated by adsorption on the surface of the preplated BiFE. The stripping step was carried out by using a square-wave (SW) potential-time voltammetric excitation signal. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3σ limit of detection for aluminium was 0.5 μg l−1 at a preconcentration time of 240 s and the relative standard deviation was 4.2% at the 5 μg 1−1 level for a preconcentration time of 120 s (n = 8). The accuracy of the method was established by analysing water and metallurgical samples.  相似文献   

8.
A newly named parameter, “initial scan potential”, the potential from which the voltammetric scan starts rather than the widely accepted accumulation potential, has been found to be responsible for some of the important features of voltammograms obtained in the adsorptive stripping voltammetry (AdSV) of some organochlorine compounds (DDT, Dieldrin, 2,4- dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid). The experimental evidence reported strongly confirms the nonfaradaic nature of the preconcentration step in adsorptive stripping voltammetry.  相似文献   

9.
Li M  Hu N  Lin S 《Talanta》1995,42(10):1389-1394
After reaction with nitric acid, brucine can be transformed into cacotheline, and then measured indirectly by adsorptive stripping voltammetry. This method is based on the adsorptive accumulation of cacotheline at a hanging mercury drop electrode, followed by cathodic linear sweep voltammetry. The cathodic peak potential is about -0.35 V (vs. saturated Ag AgCl ). The detection limit of 2.0 x 10(-9) M is obtained under optimized conditions. The electrochemical behaviour of cacotheline and the mechanism of the electrode reactions are discussed.  相似文献   

10.
A mercury coated, gold, micro-wire electrode is used here for the determination of iron in seawater by catalytic cathodic stripping voltammetry (CSV) with a limit of detection of 0.1 nM Fe at a 60 s adsorption time. It was found that the electrode surface is stable for extended periods of analyses (at least five days) and that it is reactivated by briefly (2 s) applying a negative potential prior to each scan. Advantages of this electrode over mercury drop electrodes are that metallic mercury use is eliminated and that it can be readily used for flow analysis. This is demonstrated here by the determination of iron in seawater by continuous flow analysis. It is likely that this method can be extended to other elements. Experiments using bismuth coated, carbon fibre, electrodes showed that the bismuth catalyses the oxidation of the important oxidants bromate and hydrogen peroxide, which makes it impossible to use bismuth based electrodes for catalytic CSV involving these oxidants. For this reason mercury coated electrodes retain a major advantage for catalytic voltammetric analyses.  相似文献   

11.
A sensitive and selective method for the simultaneous determination of copper, zinc and lead is presented. The method is based on the adsorptive accumulation of 2′,3,4′,5,7-pentahydroxyflavone (Morin) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. Optimal analytical conditions were found to be Morin concentration of 2.0 μM, pH of 4.0, and an adsorption potential at −500 mV versus Ag/AgCl. With an accumulation time of 60 s, the peak currents are proportional to the concentration of copper, lead and zinc over the 1 to 60, 0.3-80 and 1-70 ng ml−1 range with detection limits of 0.06, 0.08 and 0.06 ng ml−1, respectively. The procedure was applied to the simultaneous determination of copper, lead and zinc in some real and synthetic artificial real samples with satisfactory results.  相似文献   

12.
A very sensitive electrochemical stripping procedure for azinphos-methyl (Guthion) is reported. Accumulation is achieved by adsorption of the compound on a hanging mercury drop electrode. The adsorptive stripping response was evaluated with respect to accumulation time and potential, concentration dependence, electrolyte and other variables. The determination limit is 0.2 ng ml?1 after 300 s accumulation and 0.4 ng ml?1 after 180 s accumulation. The procedure was applied to spiked river water.  相似文献   

13.
Two new methods for the determination of enrofloxacin in commercial formulations and canine urine samples, based on adsorptive stripping voltammetry (AdSV), are proposed. One of the proposed method uses univariate calibration to analyse enrofloxacin in commercial formulations and the other applies principal component regression (PCR) to the voltammetric measurements to determine enrofloxacin in the presence of its metabolite ciprofloxacin. The linear concentration ranges of application were 4-25 and 18-55 ng ml−1 by using an accumulation potential of −0.3 V and a 180 or 60 s accumulation time, respectively for the univariate method. The first concentration range was used for the multivariate method. Both methods were successfully applied to the analysis of commercial formulations and spiked canine urine samples, respectively.  相似文献   

14.
A sensitive method of Co(II) determination by adsorptive stripping voltammetry is presented. The method exploits the enhancement of cobalt peak current observed in the system Co(II)-nioxime-cetyltrimethylammonium bromide-piperazine-N,N′-bis(2-ethanesulfonic acid). The calibration plot for an accumulation time of 60 s is linear from 5 × 10−11 to 3 × 10−9 mol L−1. The relative standard deviation is 3.8% for Co(II) determination at concentration 1 × 10−9 mol L−1. The detection limit is 1.7 × 10−11 mol L−1. The validation of the method is performed by the analyses of certified reference materials and comparing the result of Co(II) determination in river water sample by the proposed method with those obtained by ET AAS. The main advantage of this new system is the micro-trace Co(II) determination by adsorptive stripping voltammetry, as compared to those described before, a low concentration of the supporting electrolyte used, and so commercially available reagents without additional purification can be used.  相似文献   

15.
Mahajan RK  Walia TP  Sumanjit  Lobana TS 《Talanta》2005,67(4):755-759
The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at −0.35 V, which has been used for the determination of copper in the concentration range of 7.85 × 10−9 to 8.00 × 10−6 M with accumulation time of 360 s at −0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.  相似文献   

16.
A new method is presented for the determination of bismuth and copper based on cathodic adsorptive stripping of complexes of Cu(II) and Bi(III) with 2′,3,4′,5,7-pentahydroxyflavone (morin) at a hanging mercury drop electrode (HMDE). The effect of various parameters such as pH, concentration of morin, accumulation potential and accumulation time on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include nitric acid concentration 0.1 M, morin concentration 0.6 μM and accumulation potential of −300 mV. Those conditions for the determination of bismuth include 0.15 M acid concentration, 0.6 μM morin and accumulation potential of −300 mV. Under these optimum conditions and for an accumulation time of 60 s, the measured peak current at −20 to 25 mV is proportional to the concentration of copper and bismuth over the range of 0.2-130 and 5-50 ng ml−1, respectively. At high concentration of morin (35 μM morin) and accumulation potential of −300 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of copper and bismuth has no contribution to the current. At low concentration of morin (0.5 μM morin) and accumulation potential of 100 mV (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of bismuth. The method was applied to the determination of copper and bismuth in some real and synthetic samples with satisfactory results.  相似文献   

17.
碳糊修饰电极吸附伏安法测定食品中的锑   总被引:3,自引:0,他引:3  
研制了溴邻苯三酚红 (BPR)作修饰剂的碳糊修饰电极 ,并用此电极作工作电极建立了测定痕量锑的吸附伏安法。在选定的实验条件下 ,峰电流与Sb(Ⅲ )浓度在 8.0× 1 0 -9~ 2 .0× 1 0 -7mol L范围内呈线性关系 ,检出限为 2 .0×1 0 -9mol L ,1 0次测定相对标准偏差为 2 .0 % ,不用分离 ,可直接测定食品中痕量Sb(Ⅲ ) ,测定的回收率为 90 %~ 1 0 3%。  相似文献   

18.
The electrochemical reduction of secnidazole was carried out in BR buffer solutions in the pH range 2.0–11.8 by dc polarography. The polarograms exhibited two irreversible reduction waves in acidic media and one wave in alkaline media, corresponding to the reduction of nitro group in the drug. The cathodic adsorptive voltammetric behavior was studied on glassy carbon electrode to optimize an analytical method for determination of secnidazole. The drug was determined in the range between 4.0 × 10?6 and 1.2 × 10?4 mol L?1. The proposed method was successfully applied to the determination of the drug content in tablets with mean recovery and relative standard deviation of 100.91% and 1.82%, respectively. It was also applied to human serum with a good precision and accuracy.  相似文献   

19.
Carbon screen-printed electrodes (CSPE) modified with silver nanoparticles present an interesting alternative in the determination of lamotrigine (LTG) using differential pulse adsorptive stripping voltammetry.Metallic silver nanoparticle deposits have been obtained by electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized silver nanoparticles are deposited in aggregated form.The detection limit for this analytical procedure was 3.72 × 10−7 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.58%.The method was applied satisfactorily to the determination of LTG in pharmaceutical preparations.  相似文献   

20.
《Analytica chimica acta》2003,487(2):229-241
A new differential pulse adsorptive cathodic stripping voltammetric (DPAdCSV) method for the direct determination of cadmium at subnanomolar levels in saline waters based on metal complexation with 2-acetylpyridine salicyloylhydrazone (APSH) and subsequent adsorptive deposition onto a hanging mercury drop electrode (HMDE) is presented. A study strategy based on experimental designs has been followed. Operating conditions were improved with exploratory (Plackett-Burman) and surface response (central composite) experimental designs, involving several chemical and instrumental parameters (pH, ligand concentration, pulse amplitude, time interval for voltage step, voltage step, deposition potential and deposition time). Analytical parameters as repeatability, linearity and accuracy were also investigated and a detection limit (DL) of 0.06 nM was achieved which could be lowered by extending the adsorption time. The interference of other metals and major salts present in seawater was also studied. The method was validated with reference water samples: NIST-SRM 1643d and BCR-CRM 505, showing good concordance with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号