首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully automated screening method based on superheated water extraction of linear alquilbenzene sulfonates from sediments prior to preconcentration/derivatization/detection is presented. A multivariate optimization of both the extraction step and derivatization step was performed. Superheated water extraction was compared with conventional Soxhlet extraction obtaining better recoveries (>95% versus 80-86%) and a drastic reduction of the extraction time (50 min versus 24 h) by the proposed method. The on-line coupling of the extractor with a preconcentration/derivatization/detection manifold through a flow-injection interface has permitted to obtain a fully automated screening approach. Moreover, this research constitutes an environmentally friendly method due to the use of water as extractant instead of an organic solvent.  相似文献   

2.
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.  相似文献   

3.
Soxhlet extraction is a popular sample preparation technique used in chemical analysis. It enables liberation of molecules embedded in complex matrices (for example, plant tissues, foodstuffs). In most protocols, samples are analyzed after the extraction process is complete. However, in order to optimize extraction conditions and enable comparisons between different types of extraction, it would be desirable to monitor it in real time. The main development of this work is the design and construction of the interface between Soxhlet extractor and GC–MS as well as ESI-MS system. The temporal extract profiles, obtained in the course of real-time GC–MS monitoring, have been fitted with mathematical functions to analyze extraction kinetics of different analytes. For example, the mass transfer coefficients of pinene, limonene and terpinene in lemon sample, estimated using the first-order kinetic model, are 0.540 h−1, 0.507 h−1 and 0.722 h−1, respectively. On the other hand, the Peleg model provides the following extraction rates of pinene, limonene and terpinene: 0.370 nM h−1, 0.216 nM h−1 and 0.596 nM h−1, respectively. The results suggest that both first-order kinetic and Peleg equations can be used to describe the progress of Soxhlet extraction. On-line monitoring of Soxhlet extraction reveals extractability of various analytes present in natural samples (plant tissue), and can potentially facilitate optimization of the extraction process.  相似文献   

4.
A new selective and sensitive method for the determination of insoluble fatty acid salts (soap) in sewage sludge samples is proposed. The method involves a clean up of sample with petroleum ether, the conversion of calcium and magnesium insoluble salts into soluble potassium salts, potassium salts extraction with methanol, and a derivatization procedure previous to the liquid chromatography with fluorescence detection (LC-FLD) analysis. Three different extraction techniques (Soxhlet, microwave-assisted extraction and ultrasounds) were compared and microwave-assisted extraction (MAE) was selected as appropriate for our purpose. This allowed to reduce the extraction time and solvent waste (50 mL of methanol in contrast with 250 mL for Soxhlet procedure). The absence of matrix effect was demonstrated with two standards (C13:0 and C17:0) that are not commercials and neither of them has been detected in sewage sludge samples. Therefore, it was possible to evaluate the matrix effect since both standards have similar environmental behaviour (adsorption and precipitation) to commercial soaps (C10:0-C18:0). The method was successfully applied to samples from different sources and consequently, with different composition.  相似文献   

5.
Pressurized hot water extraction (PHWE) using a laboratory made system was applied for the extraction of thermally labile and reasonably polar components such as berberine in coptidis rhizoma, glycyrrhizin in radix glycyrrhizae/liquorice and baicalein in scutellariae radix. PHWE was carried out dynamically at a flow of 1 ml/min, temperature between 95 and 140 °C, an applied pressure of 10-20 bar and extraction time of 40 min. Extraction by PHWE was found to give efficiencies comparable to Soxhlet extraction for baicalein in scutellariae radix and sonication for berberine in coptidis rhizoma, and glycyrrhizin in radix glycyrrhizae. Effects of ethanol added into the water used in PHWE were explored. Pressurized liquid extraction (PLE) with methanol as solvent was used for extraction of baicalein in scutellariae radix. The marker compounds present in the various medicinal plant extracts were determined by gradient elution HPLC.  相似文献   

6.
Ultrasonic solvent extraction of organochlorine pesticides from soil   总被引:1,自引:0,他引:1  
Ultrasonic solvent extraction of the organochlorine pesticides (OCP) including α-, β-, γ- and Δ-hexachlorocyclohexane (HCH), heptachlor, aldrin, o,p′-DDE, dieldrin, p,p′-DDE, p,p′-DDT, methoxychlor, mirex from soil is reported. The extraction procedure was optimized with regard to the solvent type, amount of solvent, duration of sonication and number of extraction steps. Determination of pesticides was carried out by gas chromatography (GC) equipped with electron capture detection (ECD). Twice ultrasonic extraction using 25 mL of a mixture of petroleum ether and acetone (1/1 v/v) for 20 min of sonication showed satisfactory extraction efficiency. Recoveries of pesticides from fortified soil samples are over 88% for three different fortification levels between 15 and 200 μg kg−1, and relative standard deviations of the recoveries are generally below 6%. Real soil samples were analyzed for OCP residues by optimized ultrasonic solvent extraction and shake-flask as well as soxhlet extraction technique. Investigated all extraction methods showed comparable extraction efficiencies. Optimized ultrasonic solvent extraction is the most rapid procedure because the use of time in ultrasonic extraction was considerably reduced compared to shake-flask and soxhlet extraction.  相似文献   

7.
Miniaturised ultrasonic solvent extraction procedure was developed for the determination of selected polychlorinated biphenyls (PCBs) in soil samples by gas chromatography-mass-selective detection by using 23 factorial experimental design. Recoveries of PCBs from fortified soil samples are over 90% for three different fortification levels between 40 and 120 μg kg−1, and relative standard deviations of the recoveries are below 7%. The limits of detection (LODs) ranged from 0.003 to 0.006 μg kg−1. The performance of the proposed method was compared to traditional shake flask extraction method on the spiked real soil sample and extraction methods showed comparable efficiencies. Proposed miniaturised ultrasonic solvent extraction offers several advantages, i.e., reducing sample requirement for measurement of target compound, less solvent consumption and reducing the costs associated with solvent purchase and waste disposal.  相似文献   

8.
Pressurized hot water extraction (PHWE) conditions (time, temperature, pressure) were optimized for the extraction of naringenin and other major flavonoids (dihydrokaempferol, naringin) from knotwood of aspen. Extracts were analysed by GC-FID, GC-MS, HPLC-UV and HPLC-MS. The results were compared with those obtained by Soxhlet, ultrasonic extraction and reflux in methanol. Flavonoids were most efficiently extracted with PHWE at 150 °C and 220 bar with 35 min extraction time. Soxhlet with methanol gave slightly higher recoveries, but an extraction time of 48 h was required. Naringenin concentration was highest in knotwood (1.15% dry weight) and much lower in the sapwood. PHWE proved to be cheap, fast and effective for the isolation of biofunctional flavonoids from aspen knotwood, producing higher recoveries than 24 h Soxhlet extraction, sonication or 24 h reflux.  相似文献   

9.
Superheated hexane extraction has been tested for obtaining fatty acids from grape seed and compared with conventional Soxhlet and hot hexane extractions. Seeds from grape residues from a winery were dried for 46 h at 105 °C, milled and sieved by particle size (d < 0.42 mm, 0.42 < d < 0.84 mm and d > 0.84 mm). An optimization study of influential variables on superheated hexane extraction (namely extraction time, temperature, pression, particle size and sample amount) was carried out by a multivariate approach. All the extracts were concentrated in a rotary evaporator and dried by adding 1 g of Na2SO4. Then, 2 ml of the dried extract were subjected to reaction with 1 ml of a 0.5 M solution of sodium methylate in methanol to obtain fatty acid methyl esters (FAMEs). After derivatization, FAMEs were quantified by GC-FID. The results show that the optimal conditions for superheated hexane extraction are: time extraction, 10 min; temperature, 80 °C; pressure, 40 bar; particle size, d < 0.42 mm; amount of sample, 0.4 g. Under these conditions, around 84% of the fatty acids (out of the amount obtained by Soxhlet extraction) is extracted. Comparison with Soxhlet and hot hexane extractions showed that the percentages of FAMEs are similar in all the extracts and they agree with the data in the bibliography.  相似文献   

10.
A new method for determination of fatty acid amides in polyethylene packaging film was developed using gas chromatography/mass spectrometry (GC/MS). Liquid extraction, Soxhlet extraction ultrasonic-assisted extraction and pressurized solvent extraction (PSE) methods were compared and the results showed that pressurized solvent extraction was the best for extracting these compounds. After extraction, solvent was blown by nitrogen and a trifluoroethyl derivation step was carried out. The derivative compounds were identified and quantified by GC/MS using an HP-Innowax column. The retention times were 6.20 min for derivative hexadecanoamide, 8.56 min for derivative octadecanamide, 8.84 min for derivative oleamide and 13.68 min for derivative erucamide, respectively. The detection limits were 61.0 ng g−1, 74.0 ng g−1, 103.0 ng g−1, and 105.0 ng g−1, respectively, and the linearity were good. The proposed method was applied satisfactorily to determine these chemicals in different types of polyethylene samples.  相似文献   

11.
Microwave-assisted extraction (MAE) of nonylphenols (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO, respectively) and phthalate esters was optimised using an experimental design approach. A D-optimal mixture design was used to optimise the pressure inside the extraction vessel (110-207 kPa), the extraction time (5-25 min) and the extraction solvent (methanol, acetone or n-hexane) or the solvent mixture for the microwave-assisted extraction. Percentage of microwave power (80%) and solvent volume (15 ml) were fixed in all the experiments. As a consequence, the optimum extraction of these compounds was carried out at an intermediate pressure (159 kPa) with pure methanol and during 15 min. Moreover, solid phase extraction was also optimised for the clean-up of the extracts and C-18, LiChrolut® and Oasis® cartridges were studied in order to obtain the best recoveries of the compounds of interest. The highest recoveries were obtained with LiChrolut® cartridges after the elution with ethyl acetate. The cleaned extracts were analysed in a gas chromatograph with mass spectrometric detection and in a liquid chromatograph with diode array and fluorescence detection (HPLC-DAD-UV-FLD). The same sediment was also extracted twice in order to check that an exhaustive extraction of the analytes had occurred. Finally, the optimised extraction method was compared with pressurised solvent extraction (PSE), using an estuarine sediment sample.  相似文献   

12.
E.S. Farrell  G.E. Pacey 《Talanta》2010,82(2):739-744
A new dispersive vapor extraction (DVE) technique for rapid removal of selected volatile organic compounds (VOCs) from gaseous mixtures was investigated. In this technique, less than 1.0 mL of a volatile solvent was vaporized for 8 min in a 250-mL flask containing a gaseous mixture. The flask was then cooled under running tap water for 2-3 min to induce condensation of the vapor and co-extraction of the VOCs from the headspace. The technique was tested over a concentration range of 4-23 ppb, and resulted in extraction efficiencies ranging from 80 to 97% for the VOCs tested. Because of its simplicity and the relatively short sampling time, DVE could potentially lead to high sample throughput and rapid air analysis.  相似文献   

13.
A simple, cost effective, and yet sensitive sample preparation technique was investigated for determining Polycyclic Aromatic Hydrocarbons (PAHs) in solid samples. The method comprises ultrasonic extraction, Stir Bar Sorptive Extraction (SBSE), and thermal desorption–gas chromatography–mass spectrometry to increase analytical capacity in laboratories. This method required no clean-up, satisfied PAHs recovery, and significantly advances cost performance over conventional extraction methods, such as Soxhlet and Microwave Assisted Extraction (MAE). This study evaluated three operational parameters for ultrasonic extraction: solvent composition, extraction time, and sample load. A standard material, SRM 1649 a (urban dust), was used as the solid sample matrix, and 12 priority PAHs on the US Environmental Protection Agency (US EPA) list were analyzed. Combination of non-polar and polar solvents ameliorated extraction efficiency. Acetone/hexane mixtures of 2:3 and 1:1 (v/v) gave the most satisfactory results: recoveries ranged from 63.3% to 122%. Single composition solvents (methanol, hexane, and dichloromethane) showed fewer recoveries. Comparing 20 min with 60 min sonication, longer sonication diminished extraction efficiencies in general. Furthermore, sample load became a critical factor in certain solvent systems, particularly MeOH. MAE was also compared to the ultrasonic extraction, and results determined that the 20-min ultrasonic extraction using acetone/hexane (2:3, v/v) was as potent as MAE. The SBSE method using 20 mL of 30% alcohol-fortified solution rendered a limit of detection ranging from 1.7 to 32 ng L−1 and a limit of quantitation ranging from 5.8 to 110 ng L−1 for the 16 US EPA PAHs.  相似文献   

14.
In this study, a sample pretreatment method was developed for the determination of 13 endocrine disrupting chemicals (EDCs) in sediment samples based on the combination of subcritical water extraction (SWE) and dispersed liquid–liquid microextraction (DLLME). The subcritical water that provided by accelerated solvent extractor (ASE) was the sample solution (water) for the following DLLME and the soluble organic modifier that spiked in the subcritical water was also used as the disperser solvent for DLLME in succession. Thus, several important parameters that affected both SWE and DLLME were investigated, such as the extraction solvent for DLLME (chlorobenzene), extraction time for DLLME (30 s), selection of organic modifier for SWE (acetone), volume of organic modifier (10%) and extraction temperature for SWE (150 °C). In addition, good chromatographic behavior was achieved for GC–MS after derivatisation by using N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). As a result, proposed method sensitive and reliable with the limits of detection (LODs) ranging from 0.006 ng g−1 (BPA) to 0.639 ng g−1 (19-norethisterone) and the relative standard deviations (RSDs) between 1.5% (E2) and 15.0% (DES). Moreover, the proposed method was compared with direct ASE extraction that reported previously, and the results showed that SWE–DLLME was more promising with recoveries ranging from 42.3% (dienestrol) to 131.3% (4,5α-dihydrotestosterone), except for diethylstilbestrol (15.0%) and nonylphenols (29.8%). The proposed method was then successfully applied to determine 13 EDCs sediment of Humen outlet of the Pearl River, 12 of target compounds could be detected, and 10 could be quantitative analysis with the total concentration being 39.6 ng g−1, and which indicated that the sediment of Humen outlet was heavily contaminated by EDCs.  相似文献   

15.
Zhu X  Su Q  Cai J  Yang J 《Analytica chimica acta》2006,579(1):88-94
In the present study, a new method using microwave-assisted solvent extraction (MASE) technique followed directly GC analysis was developed for the extraction of volatile organic acids (VOAs) in tobacco. The MASE conditions (heating time, volume of extracting solvent and extraction temperature) were optimized by means of an orthogonal array design (OAD) procedure. The results suggested that extractant, temperature and heating time were statistically the most significant factors. The extracts were directly analyzed with capillary GC operating in splitless-injection mode on an Agilent HP-FFAP capillary column. Under optimum operating conditions, MASE showed significantly better recoveries than those obtained by the conventional extraction method (ultrasonic and reflux extraction), ranging from 90.6% to 103.2%. In addition, a drastic reduction of the extraction time (20 min versus 4 h) and solvent consumption (20 mL versus 100 mL) was achieved with an outstanding reproducibility (CV ≤5%).  相似文献   

16.
A novel method based on ultrasonic solvent extraction and stir bar sorptive extraction for the analysis of phenolic organic pollutants including chlorophenols, bisphenol-A, 4-tert-octylphenol and 4-nonylphenol in soil samples was developed. The different parameters that affect both the extraction of analytes from the soil samples, such as solvent selection, extraction time, and the partitioning from the solvent/water mix to poly(dimethylsiloxane) (PDMS) were studied. The final selected conditions consisted of the extraction of 1 g of soil with 15 mL methanol by sonication for 30 min. The methanol extract was mixed with 85 mL of Milli-Q water and extracted by means of stir bar sorptive extraction with in situ derivatisation. The stir bars were analyzed by thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). The effects of the matrix on the recovery of the various pollutants under the developed method were studied using two soils with very different physicochemical properties. Method sensitivity, linearity, repeatability, and reproducibility were also studied. Validation and accuracy of the method were conducted by analyzing two commercial certified reference materials and by comparing the analysis of real samples with the proposed method and a classical method using pressurized solvent extraction (PSE)–GC–MS. The main advantage of this method is a substantial solvent reduction. For the extraction of only 1 g of solid sample allowing limits of detection ranging from 0.2 to 1.7 μg kg−1 dw. Repeatability and reproducibility variation were lower than 20% for all investigated compounds. Results of the certified reference materials and the real samples verify the high accuracy of this method.  相似文献   

17.
This work describes the application of two sample preparation methods: membrane-assisted solvent extraction (MASE) and solid phase extraction (SPE) in combination with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS–MS) for the determination of 10 pesticides in surface and ground water. Optimal extraction conditions for MASE were 60 min extraction time at 30 °C with a solvent volume of 100 μL toluene. 5 μL of the toluene extract were directly injected in the HPLC–MS–MS system. Concerning SPE, two materials were tested and C18 was superior to Oasis HLB. Complete desorption was ensured by desorbing the SPE (C18) cartridge with 3 mL of an acetonitrile/methanol mixture (1:1). After evaporation, the extract was injected in the analytical system. Analyte breakthrough was not found for the investigated compounds. For both methods, high extraction yields were achieved, in detail 71% (metalaxyl) till 105% (linuron) for MASE and 52% (ethiofencarb) till 77% (prometryne) for SPE (C18). Detection limits were in the low ng/L range for both methods and precision, expressed as the relative standard deviation (RSD) of the peak areas was below 13%. Five real water samples were analyzed applying both extraction methods. The results were in good agreement and standard addition proved that no matrix effects (such as ion suppression) occurred. In this comparison SPE has the potential of larger sensitivity whereas faster analysis and slightly better recoveries were achieved with MASE. MASE shows potential to be a promising alternative to the conventional off-line SPE concerning low to medium polar compounds.  相似文献   

18.
A practical analytical methodology based on coupling microwave-assisted extraction-stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry (MAE-SBSE-TD-GC-MS) was developed and validated for the characterization of several SVOC in atmospheric particulate matter (PM).The high enrichment capacity of SBSE makes it a powerful tool for improving detection limits and MAE has been useful for overcoming the long extraction times and high volumes of extraction solvent used in traditional methodologies. Relative to Soxhlet extraction followed by GC-MS analysis (EPA Methods 3540 and 8270C), the MAE-SBSE-TD-GC-MS methodology resulted with approximately 104 times better detection limits. Detection limits ranged from 0.3 to 8.3 pg m−3 for pp′-DDD and decachlorobyphenyl, respectively in PM2.5, 24 m3 air sample. The performance of the optimized methodology gave good precisions, with R.S.D. less than 30% for most of the standards, and linearity within the range tested of 0.1-15 μg L−1. Analysis of real PM samples resulted in the identification of compounds in the ng L−1 range.  相似文献   

19.
A focused and rapid microwave-assisted extraction (MAE) process was carried out and optimized for secondary metabolites from crustose lichens using Taguchi experimental design and quantitative analysis on TLC by a Camag® spectrophotodensitometer. The procedure was improved by quantitative determination of norstictic acid (NA), a common depsidone isolated from Pertusaria pseudocorallina (Sw.) Arn. Various experimental parameters that can potentially affect the NA extraction yields including extraction time, irradiation power, volume and the percentage of tetrahydrofuran (THF) were optimized. Results suggest that THF percentage and solvent volume were statistically the most significant factors. The optimal conditions were determined as follows: THF level of 100%, solvent volume of 15 mL, microwave power of 100 W and extraction time of 7 min. Compared to the reflux method, MAE showed a drastic reduction of extraction time (7 min vs. 3 h) and solvent consumption (15 mL vs. 30 mL). The NA in total yield was 90% using the two methods. The optimal conditions were applied to other crustose lichens, Aspicilia radiosa, Diploicia canescens and Ochrolechia parella for the extraction of NA, diploicine (DP) and variolaric acid (VA), with 83%, 90% and 95% of recovery, respectively.  相似文献   

20.
A fast and reliable analytical method using microwave assisted extraction has been developed. Several extraction solvents (methanol (MeOH) and ethanol (EtOH), 30-70% in water and water), temperatures (50-150 °C), extraction solvent volume, as well as the sample size (1.0-0.1 g) and extraction time (5-30 min) were studied for the optimization of the extraction protocol. The optimized extraction conditions for quantitative recoveries were: 0.5 g of sample, 50 °C, 20 min and 50% ethanol as extracting solvent. No degradation of the isoflavones was observed using the developed extraction protocol and a high reproducibility was achieved (>95%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号