首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used the Bi(0 0 0 1)/Si(1 1 1) template to grow highly ordered C60 epitaxial thin films and analyzed them using scanning tunneling microscopy and low-energy electron microscopy. The in situ low-energy electron microscope investigations show that the initial nucleation of the C60 islands on the surface takes place at surface defects, such as domain boundaries and multiple steps. The in-plane lattice parameters of this C60 film turns out to be the same as that of the bulk fcc(1 1 1) C60. The line-on-line epitaxial structure is realized in spite of a weak interaction between the C60 molecules and Bi(0 0 0 1) surface, while scanning tunneling spectroscopy indicates that there is a negligible charge transfer between the molecules and the surface.  相似文献   

2.
K.L. Man 《Surface science》2007,601(20):4669-4674
Information on the kinetic regime of step motion and step permeability on the Si(1 1 1) (1 × 1) surface has been obtained from observations of island decay that were made with low energy electron microscopy. Island area during decay exhibits the expected power law dependence on time, with exponent, α, that is a qualitative indicator of the kinetic regime. A new method is presented for determining the kinetic length quantitatively from measurements of the decay exponent in the symmetric island decay geometry on top of a larger concentric circular island. Using this approach, we determine the kinetic length on the Si(1 1 1) (1 × 1) surface at 1163 K to be d ∼ 75a, where a is the lattice constant. It is shown that this result locates step motion firmly in the diffusion limited regime. Mass conservation of decaying island stacks is also observed at this temperature, which indicates that steps are effectively impermeable in the context of diffusion limited step kinetics.  相似文献   

3.
Growth behavior of thin Ag films on Si substrates at room temperature has been investigated by scanning tunneling microscopy and reflection high energy electron diffraction. In the layer-plus-island growth Ag islands show strongly preferred atomic scale heights and flat top. At low coverage (1 ML), islands containing two atomic layers of Ag are overwhelmingly formed. At higher coverages island height distribution shows strong peaks at relative heights corresponding to an even number (2, 4, 6, …) of Ag atomic layers. Beyond some coverage the height preference vanishes due to the appearance of screw dislocations and spiral growth.  相似文献   

4.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

5.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

6.
The ordered arrays of Ag nanowires and nanodots have been grown in ultra-high vacuum on the Si(5 5 7) surface containing regular steps of three bilayer height. Formation of Ag nanostructures have been studied by scanning tunneling microscopy, low energy electron diffraction and Auger electron spectroscopy at room temperature. It was shown that a sample exposure in the vacuum before Ag growth affects the shape of the forming Ag islands. This effect is caused by oxygen adsorption on the silicon surface from the residual atmosphere in the vacuum chamber. When Ag is deposited on the clean silicon surface the islands, overlapping several (1 1 1) neighboring terraces, form. The arrays of silver nanowires elongated along steps and silver nanodots, arranged in lines parallel to the steps, can be formed on the Si(5 5 7) surface depending on the amount of adsorbed oxygen.  相似文献   

7.
8.
The initial stage of cubic silicon carbide (3C-SiC) growth on a Si(0 0 1) surface using dimethylsilane (DMS) as a source gas was observed using scanning tunneling microscopy (STM) and reflection high-energy electron diffraction (RHEED). It was found that the dimer vacancies initially existing on the Si(0 0 1)-(2 × 1) surface were repaired by the Si atoms in DMS molecules, during the formation of the c(4 × 4) surface. From the STM measurement, nucleation of SiC was found to start when the Si surface was covered with the c(4 × 4) structure but before the appearance of SiC spots in the RHEED pattern. The growth mechanism of SiC islands was also discussed based on the results of RHEED, STM and temperature-programmed desorption (TPD).  相似文献   

9.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

10.
S.A. Teys 《Surface science》2006,600(21):4878-4882
The vicinal Si(1 1 1) surface, inclined towards the direction, was investigated by scanning tunnelling microscopy and spot profile analysing low energy electron diffraction. It has been established that the surface, consisting of regularly spaced triple steps and (1 1 1) terraces with a width equal to that of a single unit cell of the Si(1 1 1)-7 × 7 surface structure, has the (7 7 10) orientation. An atomic model of the triple step is proposed.  相似文献   

11.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

12.
Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 × 1) reconstruction structure changes to a (1 × 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 × 2√3)R30° by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 × 1) and (2√3 × 2√3)R30° surfaces is longer than that on the Au(1 1 1) (23 × 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport.  相似文献   

13.
H.Y. Ho 《Surface science》2006,600(5):1093-1098
Low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) were used to study the growth and the structural evolution of Ni/Co/Pt(1 1 1) following high-temperature annealing. From the oscillation of the specular beam of the LEED and Auger uptake curve, we concluded that the growth mode of thin Ni films on 1 ML Co/Pt(1 1 1) is at least 2 ML layer-by-layer growth before three-dimensional island growth begins. The alloy formation of Ni/1 ML Co/Pt(1 1 1) was analyzed by AES. The temperature for the intermixing of Ni and Co layers in the upper interface without diffusing into the bulk of Pt is independent of the thickness of Ni when a Co buffer is one atomic monolayer. After the temperature was increased, formations of Ni-Co-Pt alloy, Ni-Pt alloy and Co-Pt alloy were observed. The temperature required for the Ni-Co intermixing layer to diffuse into Pt bulk increases with the thickness of Ni. The interlayer distance as a function of annealing temperature for 1 ML Ni/1 ML Co/Pt(1 1 1) was calculated from the I-V LEED. The evolution of LEED patterns was also observed at different annealing temperatures.  相似文献   

14.
Reflection high-energy electron diffraction (RHEED), reflectance difference spectroscopy (RDS), and scanning tunneling microscopy (STM) have been used to study the anisotropic kinetics on the growing Ge(0 0 1) surface. While switching of dimer direction in alternate (2 × 1)/(1 × 2) layers causes the bilayer-period oscillations in RD response, RHEED oscillations are governed by variations in surface step densities. We show that the RHEED oscillations are strongly affected by the growth front morphology: when the growth front becomes distributed over several layers, the transition from bilayer- to monolayer-period occurs in RHEED oscillations.  相似文献   

15.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

16.
We have investigated surface structures formed by deposition of 0.2 and 0.5-ML Ge on Pt(1 0 0) by using scanning tunneling microscopy (STM) and low electron energy diffraction (LEED). In addition, their temperature dependence and reactivity to CO have been studied. We observed the formation of disordered domains for Ge adatom coverages below 0.25-ML and complete c(2 × 2) structures at 0.25 to 0.5-ML Ge after annealing at 600-1200 K. Deposition of 0.2-ML Ge on a clean, hexagonally reconstructed (5 × 20)-Pt(1 0 0) substrate at 400 K lifts the reconstruction and ejects excess Pt atoms from the first layer into the adlayer. After annealing this surface to 600 K, the deposited Ge formed Ge adatoms on flat terraces and on round Pt adislands with incomplete c(2 × 2) structures, in addition to the presence of clean (1 × 1)-Pt(1 0 0) domains that were several nanometers across. Some domains of the unreconstructed (5 × 20)-Pt(1 0 0) surface still remained. After the deposition of 0.5-ML Ge and annealing at 600 K, disordered Ge domains disappeared and a c(2 × 2) Ge overlayer was produced all over the surface. Square terraces with square domains of the clean (1 × 1)-Pt(1 0 0) surface extended for nanometers. Annealing this surface to 900 K produced disordered Ge domains, and this was associated with an increase in Ge vacancies. When surfaces with 0.2-ML Ge were heated to 900 or 1200 K, or when a surface with 0.5-ML Ge was heated to 1200 K, larger domains of (5 × 20)-Pt(1 0 0) were formed with the agglomeration of disordered Ge adatoms. Pt clusters were observed in the Ge domains, and we consider these to be composed of those excess Pt atoms formed by lifting the reconstruction of the (5 × 20)-Pt(1 0 0) surface upon Ge agglomeration during cooling. A paper published elsewhere [T. Matsumoto, C. Ho, M. Batzill, B.E. Koel, Physical Review B, submitted for publication.] describes Na+-ion scattering spectroscopy (Na+-ISS) and X-ray photoelectron diffraction (XPD) experiments that distinguish between Ge present in an overlayer from incorporation into the top Pt layer to form a surface alloy for the surface structures reported here. Furthermore, these investigations revealed that disordered Ge adatoms observed herein might be associated with incomplete c(2 × 2) structures. Therefore, our observations of the formation of complete and incomplete domains of c(2 × 2) Ge adatoms indicate that interactions between Ge adatoms are repulsive at nearest neighbor distances and attractive at second-nearest neighbor distances. Regarding the reactivity of these surfaces, CO does not chemisorb on a Pt(1 0 0) surface with a c(2 × 2)-Ge overlayer and no measurable CO uptake was observed under UHV conditions at 220 K.  相似文献   

17.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2006,600(18):3540-3543
The reactivity of clean and pre-oxidised Cu(1 1 1) surfaces exposed to sulphur (H2S) has been studied at room temperature by Auger electron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. On the clean surface, the sulphur-saturated surface structure is dominated by the or so-called “zigzag” superstructure. It is shown that a single orientation domain is favoured by the slight misorientation (∼2°) of the surface with respect to the (1 1 1) plane. Scanning tunneling microscopy measurements also revealed two minority structures. Pre-oxidation was performed by exposure to 1.5 × 104 L of O2 at 300 °C. Under exposure to H2S (1 × 10−7 mbar) at room temperature, the oxygen is totally substituted by sulphur. Once initiated, sulphur adsorption seems to propagate to cover the whole surface on the O-covered surface faster than on the clean Cu(1 1 1). At saturation by adsorbed sulphur, the surface is completely covered by the superstructure of highest coverage. This enhanced uptake of sulphur is assigned to the surface reconstruction of the copper surface induced by the pre-oxidation, causing a stronger reactivity of the Cu atoms released by the decomposition of the oxide.  相似文献   

18.
The surface morphology of yttria stabilized zirconia (YSZ)(1 0 0) single crystals are examined by AFM and XPS before and after thermal annealing in air to 1000 °C. The surfaces show a large variability in topography which can be categorized in three types: (1) surfaces with well defined terraces, (2) surfaces with etch pits and no visible terraces, (3) surfaces with large square or rectangular holes with flat bottoms. All three types of surfaces show a large number of defects (pits, adatoms, steps) originating from the manufacturing process, and certain samples show large nano-structured arrays of self-organized lines at step edges. The evolution of the surfaces with time at 1000 °C and with higher temperatures was studied. Terraces are ultimately obtained for all sample types at 1300 °C, but the terrace shape is affected by the original defect structure. This history dependence is attributed to defect interactions modifying the annealing process. This is true even for UHV samples prepared using sputter-anneal cycles. The surface type is found to affect the nucleation, growth and sintering behaviour of palladium deposited by electron beam evaporation. For type 3 samples the metal nucleates at step edges outside the holes to particles 6 Å in height, following heating to 135 °C the particles move inside the holes forming agglomerates up to 20 Å.  相似文献   

19.
The room temperature deposition of PTCDA on hydrogen passivated Si(1 1 1), as a function of evaporation temperature and dosing time, has been studied by STM. At low evaporation temperature, 200 °C, clusters with an average size of 3.5 nm are formed on the surface. The mobility of the small clusters is so high, even at room temperature, that most of the clusters are trapped at surface defects. By increasing the evaporation temperature to 230 °C, larger clusters are formed which have lower mobility. The growth process is identified as a Volmer-Weber mechanism. On increasing the evaporation temperature further to 250 °C, crystals with dendritic shape are formed with an average size of 150 nm. The terraces of the crystal are formed with the (1 0 2) basal plane of the α-phase. Molecular resolution on the terrace also allows us to identify the molecular mechanism involved in the growth of the dendritic crystals.  相似文献   

20.
K. Hayashi  A. Kawasuso 《Surface science》2006,600(19):4426-4429
We have investigated the feature of reflection high-energy positron diffraction (RHEPD) pattern from a Si(1 1 1)-(7 × 7) surface. The RHEPD pattern observed in the total reflection condition is quite different from the conventional reflection high-energy electron diffraction (RHEED) pattern. This fact is attributed to the different penetration depths of positrons and electrons. We show that the intensity distribution of RHEPD pattern is reproduced considering the dimer-adatom-stacking fault (DAS) model with optimized atomic positions and scattering potentials of adatoms and rest atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号