首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to investigate the amounts and characteristics of heavy metals (As, Hg) leachable from several Chinese medicinal materials (CMM) under conditions simulating stomach and intestine digestion and absorption. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) was compared with that by hydride generation atomic fluorescence spectrometry (HG-AFS). Focused microwave assisted extraction (MAE) and Soxhlet extraction were carried out to compare with the conventional sequential extraction method. The CMM studied included two mineral drugs: realgar and cinnabar, and two formulated drugs containing the two minerals. The leachable amounts of the target elements into artificial stomach fluid, artificial intestinal fluid, and artificial intestinal fluid in 0.5% trypsin were compared. The last solvent gave the greatest amounts of leachable As (0.41%) from realgar and Hg (1×10−4%) from cinnabar, but otherwise no significant effect on the leachable amounts was observed upon changing the following parameters: temperature (37-60 °C), HCl concentration (0.5-6 M), and CMM sample particle size (74 and 250 μm). The low leaching efficiencies observed confirmed the presence of As and Hg as insoluble species (sulfides)in these mineral drugs. Sequential extraction schemes were used to determine the species of mercury and arsenic in formulated drugs containing the minerals. Trace amounts of organic forms of arsenic (0.43%) and mercury (2.9×10−4%) were observed which could be the transformation products derived from the original cinnabar or realgar minerals in drug formulation.  相似文献   

2.
Li X  Wang Z 《Analytica chimica acta》2007,588(2):179-183
A novel method for determination of mercury was developed using an intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry (IF-ECVG-AFS). The mercury vapor was generated on the surface of glassy carbon cathode in the flow cell. The operating conditions for the electrochemical generation of mercury vapor were investigated in detail, and the interferences from various ions were evaluated. Under the optimized conditions, no evident memory effects of mercury were observed. The calibration curve was linear up to 5 μg L−1 Hg at 0.54 A cm−2. A detection limit of 1.2 ng L−1 Hg and a relative standard deviation of 1.8% for 1 μg L−1 Hg were obtained. The accuracy of method was verified by the determination of mercury in the certified reference human hair. The ECVG avoided the use of reductants, thereby greatly reducing the contamination sources. In addition, the manifold of IF-ECVG-AFS was simple and amenable to automation.  相似文献   

3.
A highly sensitive mechanized method has been developed for the determination of mercury in milk by atomic fluorescence spectrometry (AFS). Samples were sonicated for 10 min in an ultrasound water bath in the presence of 8% (v/v) aqua regia, 2% (v/v) antifoam A and 1% (m/v) hydroxilamine hydrochloride, and after that, they were treated with 8 mmol l−1 KBr and 1.6 mmol l−1 KBrO3 in an hydrochloric medium. Atomic fluorescence measurements were made by multicommutation, which provides a fast alternative in quality control analysis, due to the easy treatment of a large number of samples (approximately 70 h−1), and is an environmentally friendly procedure, which involves a waste generation of only 94.5 ml h−1 as compared with the 605 ml h−1 obtained by using continuous AFS measurements. The limit of detection found was 0.011 ng g−1 Hg in the original sample. The method provided a relative standard deviation of 3.4% for five independent analysis of a sample containing 0.30 ng g−1 Hg. To validate the accuracy of the method, a certified reference material NIST-1459 (non-fat milk powder) containing 0.3±0.2 ng g−1 Hg was analysed and a value of 0.27±0.06 ng g−1 Hg was found. A comparison made between data found by the developed procedure and those obtained by microwave-assisted digestion and continuous AFS measurements evidenced a good comparability between these two strategies. Results obtained for commercially available milk samples varied between 0.09 and 0.61 ng g−1 Hg depending on the type of sample and its origin. The confluence of the analytical waste with a 6 mol l−1 NaOH allowed us to reduce the waste generation in a working session from 1 l to 5 g solid residue with a matrix of Fe(OH)3 which contributes to the deactivation of traces of heavy metals presents in the samples that does not form volatile hydrides.  相似文献   

4.
A slurry sampling hydride generation (SS-HG) method for the simultaneous determination of hydride forming elements (As, Sb, Se, Sn) and Hg, without total sample digestion, has been developed using batch mode generation system coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from certified biological and environmental reference materials. Slurry concentration up to 3.6% m/v (particles < 80 μm) prepared in 10% HCl containing 100 μl of decanol, by the application of ultrasonic agitation, was used with calibration by the standard addition technique. Harsh conditions were used in the slurry preparation in order to reduce the hydride forming elements to their lower oxidation states, As(III), Sb(III), Se(IV) and Sn(II) and Hg, being reduced to mercury vapor, before reacting with sodium tetrahydroborate. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction vessel. For 10 ml of slurry sample, detection limits (LOD, 3σblank, peak area) of 0.06, 0.08, 0.15, 0.12 and 0.10 μg g− 1 were obtained for As, Sb, Se, Sn and Hg, respectively. The method offers relatively good precision (RSD ranged from 9 to 12%) for slurry analysis. To test the accuracy, three certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials: NRCC LUTS-1 (lobster hepatopancreas), NRCC DOLT-2 (Dogfish Liver) and environmental reference material: NRCC PACS-1 (Marine Sediment), all adequate for slurry sampling. The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

5.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.  相似文献   

6.
Silver (Ag) and gold (Au) nanoparticles impregnated in nylon membrane filters have been proposed as a new solid phase for preconcentration of mercury from natural waters. Water samples were treated with KMnO4 to convert all mercury species to inorganic Hg2+ and this was followed by the reduction of Hg2+ with NaBH4 to elemental Hg0. The determination of Hg was carried out by thermal evaporation of mercury from membrane filters using Zeeman mercury analyzer RA–915+ (Lumex, Russia). This process does not involve any additional sample treatment and sharply reduces risk of samples contamination. The limit of detection (LOD) was found to be 0.04 ng (absolute mass). Relative LOD was 0.4 ng L−1 for 100 mL of water. The method was validated through the analysis of CRM NRCC Tort–2 (Lobster hepatopancreas) and the found value (0.30 ± 0.07 μg g−1) was in good agreement with the certified value (0.27 ± 0.06 μg g−1). High efficiency of Hg accumulation from aqueous phase to membrane filters can be attributed to a large surface area of nanoparticles.  相似文献   

7.
An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL− 1 Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 рg mL− 1 (3σ). The accuracy of the method was evaluated through analysis of the reference materials GBW09101 (Human hair) and GBW 08517 (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.  相似文献   

8.
In this work, a new 2-(2-oxoethyl)hydrazine carbothioamide modified silica gel (SG-OHC) sorbent was prepared and applied for preconcentration of trace mercury(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimization of some analytical parameters affecting the adsorption of the analyte such as acidity, shaking time, sample flow rate and volume, eluent condition, and interfering substances were investigated. At pH 3, the maximum static adsorption capacity of Hg(II) onto the SG-OHC was 37.5 mg g−1. The quantitative recovery (>95%) of Hg(II) could be obtained using 2 mL of 0.5 mol L−1 HCl and 1% CS(NH2)2 solution as eluent. Common coexisting substances did not interfere with the separation of mercury(II) under optimal conditions. The detection limit of present method was 0.10 ng mL−1, and the relative standard deviation (RSD) was lower than 4.0% (n = 8). The prepared sorbent was successfully applied for the preconcentration of trace Hg(II) in certified and water samples with satisfactory results.  相似文献   

9.
A simple and sensitive method with a fast sample preparation procedure is proposed for the determination of mercury species in plasma/serum. The method combines online high-performance liquid chromatography separation, Hg cold-vapor formation and inductively coupled plasma mass spectrometry detection. Prior to analysis, plasma (250 μL) was accurately pipetted into 15 mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCl was added to the samples following sonication for 10 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 8 min on a C8 reverse phase column with a mobile phase containing 3% v/v methanol + 97% v/v (0.5% v/v 2-mercaptoethanol + 0.05% v/v formic acid). The method detection limits were found to be 12 ng L−1, 5 ng L−1 and 4 ng L−1 for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from NIST. Additional validation was provided by the analysis of a secondary reference serum sample from the INSQ-Canada. Finally, the method was successfully applied for the speciation of mercury in plasma samples collected from volunteers exposed to methylmercury through fish consumption. For the first time to our knowledge, levels of different species of Hg in plasma samples from riverside populations exposed to MeHg were determined.  相似文献   

10.
Kan M  Willie SN  Scriver C  Sturgeon RE 《Talanta》2006,68(4):1259-1263
Total mercury in biological samples was determined by flow injection (FI) cold vapour atomic absorption spectrometry (CVAAS) following tissue solubilization with formic acid. A mixture of potassium bromide and potassium bromate was used to decompose organomercury compounds prior to their reduction with sodium borohydride. A gold amalgam system was used to achieve lower detection limits when required. National Research Council Canada certified reference materials dogfish liver (DOLT-3), dogfish flesh (DORM-2) and lobster hepatopancreas (TORT-2), as well as oyster tissue (NIST SRM 1566b) and mussel tissue (NIST SRM 2976) were used to assess the accuracy of the method. The method of standard additions provided the most accurate results. Limit of detection (LOD) for Hg in the solid sample of 0.001 and 0.01 μg g−1 were achieved with and without amalgamation, respectively. The precision of measurement for 1.6 ng ml−1 methylmercury was 2.7% using the amalgam system.  相似文献   

11.
A method was developed for determination of methylmercury and estimation of total mercury in seafood. Mercury (Hg) compounds were extracted from 0.5 g edible seafood or 0.2 g lyophilized reference material by adding 50 ml aqueous 1% w/v l-cysteine·HCl·H2O and heating 120 min at 60 °C in glass vials. Hg compounds in 50 μl of filtered extract were separated by reversed-phase high performance liquid chromatography using a C-18 column and aqueous 0.1% w/v l-cysteine·HCl·H2O + 0.1% w/v l-cysteine mobile phase at room temperature and were detected by inductively coupled plasma-mass spectrometry at mass-to-charge ratio 202. Total Hg was calculated as the mathematical sum of methyl and inorganic Hg determined in extracts. For seafoods containing 0.055-2.78 mg kg−1 methylmercury and 0.014-0.137 mg kg−1 inorganic Hg, precision of analyses was ≤5% relative standard deviation (R.S.D.) for methylmercury and ≤9% R.S.D. for inorganic Hg. Recovery of added analyte was 94% for methylmercury and 98% for inorganic Hg. Methyl and total Hg results for reference materials agreed with certified values. Limits of quantitation were 0.007 mg kg−1 methylmercury and 0.005 mg kg−1 inorganic Hg in edible seafood and 0.017 mg kg−1 methylmercury and 0.012 mg kg−1 inorganic Hg in lyophilized reference materials. Evaluation of analyte stability demonstrated that l-cysteine both stabilized and de-alkylated methylmercury, depending on holding time and cysteine concentration. Polypropylene adversely affected methylmercury stability. Total Hg results determined by this method were equivalent to results determined independently by cold vapour-atomic absorption spectrometry. Methylmercury was the predominant form of Hg in finfish. Ratios of methylmercury/total Hg determined by this method were 93-98% for finfish and 38-48% for mollusks.  相似文献   

12.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

13.
A method for the simultaneous preconcentration and determination of Hg(II) and MeHg(I) at the ng ml−1 level has been developed. This method is based on solid phase extraction using a newly synthesized chelating resin containing nitrogen and sulphur donor sites of the 1,2-bis(o-aminophenylthio)ethane moiety that is very selective for mercury. The characterization of the resin has been carried out by elemental analyses, infrared spectral data, thermogravimetric analysis and metal ion capacities. The resin is highly selective for Hg(II) and MeHg(I) with an exchange capacity of 0.38 and 0.30 mmol g−1, respectively. Various parameters like pH, column flow rate, desorbing agents are optimized. Cold vapour atomic absorption spectrometry (CVAAS) was used to measure the concentration of both species of mercury. The calibration graph was linear upto 10 ng ml−1 with a 3σ detection limit of 0.09 ng ml−1. The recovery of Hg(II) and MeHg(I) was found to be 98.9±2.0 and 98.0±1.1%, respectively. The method has been used for routine determination of trace levels of mercury species in natural waters to comply with more stringent regulations.  相似文献   

14.
This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92–98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).  相似文献   

15.
This work demonstrated the feasibility of mercury speciation analysis by anion exchange chromatographic separation with inductively coupled plasma mass spectrometry detection. For the first time, by complexing with the mobile phase containing 3-mercapto-1-propanesulfonate into negatively charged complexes, fast separation of inorganic mercury (Hg2+), monomethylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) was achieved within 5 min on a 12.5-mm strong anion exchange column. The detection limits for Hg2+, MeHg, EtHg and PhHg were 0.008, 0.024, 0.029 and 0.034 μg L−1, respectively. The relative standard deviations of peak height and peak area (5.0 μg L−1 for each Hg species) were all below 3%. The determined contents of Hg2+, MeHg and total Hg in a certified reference material of fish tissue by the proposed method were in good accordance with the certified values with satisfactory recoveries. The relative errors for determining MeHg and total mercury were −2.4% and −1.2%, respectively, with an acceptable range for spike recoveries of 94–101%. Mercury speciation in 11 fish samples were then analyzed after the pretreated procedure. The mercury contents in all fish samples analyzed were found compliant with the criteria of the National Standards of China.  相似文献   

16.
A continuous ultrasound-assisted extraction system connected to a flow injection manifold has been used for the on-line determination of zinc in meat samples by flame atomic absorption spectrometry. An experimental design was used for the optimisation of the continuous manifold. This flow injection methodology allowed a sampling frequency of ca. 80 samples per hour with a relative standard deviation for the whole procedure of 0.3% (for a sample containing 163.6 μg g−1 Zn). The detection limit was 0.6 μg g−1 for a sample amount of 5 mg. Accurate results were obtained by measuring certified reference materials (BCR-186 (pig kidney) and BCR-184 (bovine muscle)). The analytical procedure was applied to different real meat samples with satisfactory results.  相似文献   

17.
Jiang H  Hu B  Jiang Z  Qin Y 《Talanta》2006,70(1):7-13
A new method using a microcolumn packed with YPA4 chelating resin as solid-phase extractor has been developed for the separation and preconcentration of trace Hg prior to its measurement by GFAAS with Pd as a permanent modifier. Various parameters such as the amount of the modifier, pH, sample flow rate, the concentration and volume of eluent have been studied in order to find the best conditions for the determination of mercury. The detection limit of the method (3σ) for Hg based on an enrichment factor of 100 was 0.2 ng ml−1. A characteristic mass of 114 pg was obtained for mercury using Pd as a permanent modifier. The relative standard deviation was 2.8% at the 10 ng ml−1 level (n = 5). The method has been applied to the determination of trace mercury in environmental water samples and the recoveries for the spiked samples are in the range of 91-105%.  相似文献   

18.
《Analytica chimica acta》2004,511(1):165-173
Two methodologies have been developed for the analysis of mercury species in seafood by capillary gas chromatography coupled to an AFS detector via pyrolysis. The first one is based on the ethylation of both, inorganic and methylmercury species (Method 1), in which clean-up is not necessary because a small amount of sample is required. In the second one, monoalkylated mercury species are extracted into organic phases after forming the corresponding chlorides (Method 2). In this case the elimination of the interfering compounds from the matrix requires a clean-up step, which enables the treatment of higher quantities of sample. Both procedures can be considered complementary because the concentration range applicable for each one of them is different: 0.75-10 μgHg g−1, in dry basis for methylmercury (Method 1) and 6-1000 ngHg g−1 (Method 2). The range of application for natural samples can be easily selected by a preliminary analysis of total mercury, because most mercury in seafood is present as MeHg. Optimum parameters for both procedures have been evaluated, and the methods were validated with two standard reference materials (BCR-463 and NIST-2977). Finally, the methods have been applied to the analysis of seafood samples. Detection limits of MeHg range from 1.7 to 220 ngHg g−1 (dry basis) depending of the methodology selected and the weight of sample. The method can be successfully applied to commercially available seafood samples, and considered for routine analysis.  相似文献   

19.
A simple and robust time-based on-line sequential injection system for trace mercury determination via cold vapour atomic absorption spectrometry (CVAAS), employing a new integrated gas-liquid separator (GLS), which in parallel operates as reactor, was developed. Sample and reductant are sequentially loaded into the GLS while an argon flow delivers the released mercury vapour through the atomic absorption cell. The proposed method is characterized by the ability of successfully managing variable sample volume up to 30 ml in order to achieve high sensitivity. For 20 ml sample volume, the sampling frequency is 25 h−1. The calibration curve is linear over the concentration range 0.05-5.0 μg l−1 of Hg(II), the detection limit is cL = 0.02 μg l−1, and the relative standard deviation is sr = 2.6% at 1.0 μg l−1 Hg(II) level. The performance of the proposed method was evaluated by analyzing certified reference material and applied to the analysis of natural waters and biological samples.  相似文献   

20.
A simple, rapid and accurate method on the basis of multicapillary gas chromatography (MCGC) combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) was developed for speciation analysis of methylmercury (MeHg+) and inorganic mercury (Hg2+). The potential of the ICP-TOFMS for transient multi-isotope detection of very short signals (peak width of 0.4 s at half peak height) was evaluated. Two injection systems (purge-and-trap (PTI) and split (SI) injections) were compared in terms of species separation resolution and transient signal profile. Using purge-and-trap injection, after in situ derivatization of the ionic mercury species with sodium tetraethylborate, a baseline separation of MeHg+ and Hg2+ was achieved within a chromatographic run of <35 s. To correct for matrix-induced ion signal variation and instrumental drift, propylmercury (PrHg+) was used as internal standard. Detection limits of 16 and 257 fg g−1 for MeHg+ (as Hg) and Hg2+, respectively, were achieved. The analytical precision (R.S.D. (%)) for 10 successive injections of a standard mixture containing 10 pg MeHg+ (as Hg) and Hg2+ was 1.2% for MeHg+ and 4.1% for Hg2+. The method was validated by analysis of two biological certified reference materials (CRM): a dogfish muscle (DORM-2) and a freeze-dried tuna fish (CRM 464).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号