首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Techniques have been developed to allow on-line simultaneous analysis of concentration and stable isotopic compositions ((13)C and (18)O) of dissolved carbon monoxide (CO) in natural water, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The analytical system consisted sequentially of a He-sparging bottle of water, a gas dryer, CO(2)-trapping stage using both Ascarite trap and silica-gel packed gas chromatography (GC), on-line oxidation to CO(2) using the Schütze reagent, cryofocusing, GC purification using a capillary column and measurement by CF-IRMS. Each sample analysis takes about 40 minutes. The detection limit with delta(13)C standard deviation of 0.5 per thousand is 300 pmol and that with delta(18)O deviation of 1.0 per thousand is 750 pmol. Analytical blanks associated with these methods are 21+/-9 pmol. The procedures are evaluated through analyses of temporally varying concentration and isotopic compositions of CO in an artificial lake on the university campus. The delta(13)C and delta(18)O values of CO showed wide variation in accordance with diurnal variation of CO concentration, probably due to significant isotopic effects during photochemical production and microbial oxidation of CO in the aquatic environment. The delta(13)C and delta(18)O values of CO should be a useful tool in studies of the mechanism and pathways of CO production and consumption in natural waters.  相似文献   

2.
Stable carbon isotope ratios (13C/12C) are a valuable tool for studying a wide range of environmental processes, including carbon cycling and subsurface microbial activity. Recent advances in automated analysis provide the opportunity to increase greatly the ease and consistency of isotopic analysis. This study evaluated an automated headspace sampler linked to a commercially available CO2 preconcentration system and continuous flow isotope ratio mass spectrometer. Field sampling and analysis methods are illustrated for delta13C of soil respired CO2, from both tracer and natural abundance experiments, and dissolved inorganic carbon from contaminated groundwater. The automated system demonstrated accuracy, precision, and linearity, with standard errors below 0.1 per thousand for replicate gas standards run at concentrations varying five-fold. It measured 40 samples per 10-hour run, with concentrations ranging from ppb to percentage levels. In the field, gas samples were injected into nitrogen-filled autosampler vials, thereby allowing use of small sample volumes, control of analyte concentration, and direct analysis by the automated system with no further preparation. A significant linear relationship between standard concentrations and peak area allows for accurate estimates of sample CO2 concentration from the mass spectrometric data. The ability to analyze multiple small-volume samples with minimal off-line preparation should enhance the application of isotopes to well-replicated field experiments for process-level studies and spatial and temporal scaling.  相似文献   

3.
A technique for measurement of the stable isotope composition of dissolved organic carbon (DOC) in stream water, using an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (IRMS), is described. Stream water samples were concentrated by rotary evaporation, acidified to remove dissolved inorganic carbon (DIC), and dried in silver cups prior to analysis. Precision was evaluated with standards (alanine and humic acid), and with stream water samples with varying (13)C enrichment. Standards and samples were also prepared in sealed quartz tubes for high-temperature combustion (HTC) and analyzed by dual inlet for comparison. The delta(13)C values of natural abundance standards and samples measured by the two techniques differed by 相似文献   

4.
A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.  相似文献   

5.
We have developed an analytical system to determine stable isotopic compositions (delta13C and delta18O) of sub-microgram quantities of CaCO3 for the purpose of analyzing individual foraminiferal shells, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The system consists of a micro-volume CaCO3 decomposition tube, stainless steel CO2 purification vacuum line with a quantity-regulating unit, helium-purged CO2 purification line, gas chromatograph, and a CF-IRMS system. By using this system, we can determine stable carbon and oxygen isotopic compositions as low as 0.2 microg of CaCO3, with standard deviations of +/-0.10 per thousand for delta13C and +/-0.18 per thousand for delta18O within a 4-h reaction time and 30-min analysis period.  相似文献   

6.
Many Salmo trutta populations consist of non-anadromous (freshwater-resident) brown trout and anadromous (sea-run migratory) sea trout. Although adult brown trout and sea trout can usually be identified using differences in size and body colouration, it is not possible to easily identify eggs/alevins as the progeny of brown trout or sea trout. In this study we show that delta(13)C and delta(15)N, measured using a continuous flow isotope ratio mass spectrometer (CF-IRMS), can accurately identify fish eggs as the progeny of freshwater-resident (delta(13)C(egg) = -25.7 +/- 1.9 per thousand,delta(15)N(egg) = 9.2 +/- 1.8 per thousand) or migratory (delta(13)C(egg) = -19.9 +/- 1.1 per thousand, delta(15)N(egg) = 14. 3 +/- 1.5 per thousand) adult female Salmo trutta. Case studies show that stable isotope analysis is a more reliable technique for distinguishing anadromous adult fish than differentiation using morphological characteristics. For example, stable isotope analysis of brown trout from Loch Eck, Scotland, revealed that some individuals possessed delta(13)C and delta(15)N signatures indicative of marine feeding despite visual identification as freshwater-resident fish. It is most likely that these fish are misidentified sea trout although it possible that these fish may be brown trout that have adopted an estuarine feeding strategy to avoid interspecific competition for food within Loch Eck with salmon, powan and Arctic charr. Most stable isotope studies of fish ecology use terminal tissue sampling to provide sufficient biological material for isotopic analysis; however, our study suggests that adipose fin tissue could provide a comparable measure of delta(13)C and delta(15)N. Such a strategy would be invaluable when studying the trophic ecology or migration patterns of fish of high conservation value.  相似文献   

7.
We present here an improved and reliable method for measuring the concentration of dissolved inorganic carbon (DIC) and its isotope composition (delta(13)C(DIC)) in natural water samples. Our apparatus, a gas chromatograph coupled to an isotope ratio mass spectrometer (GCIRMS), runs in a quasi-automated mode and is able to analyze about 50 water samples per day. The whole procedure (sample preparation, CO(2(g))-CO(2(aq)) equilibration time and GCIRMS analysis) requires 2 days. It consists of injecting an aliquot of water into a H(3)PO(4)-loaded and He-flushed 12 mL glass tube. The H(3)PO(4) reacts with the water and converts the DIC into aqueous and gaseous CO(2). After a CO(2(g))-CO(2(aq)) equilibration time of between 15 and 24 h, a portion of the headspace gas (mainly CO(2)+He) is introduced into the GCIRMS, to measure the carbon isotope ratio of the released CO(2(g)), from which the delta(13)C(DIC) is determined via a calibration procedure. For standard solutions with DIC concentrations ranging from 1 to 25 mmol . L(-1) and solution volume of 1 mL (high DIC concentration samples) or 5 mL (low DIC concentration samples), delta(13)C(DIC) values are determined with a precision (1sigma) better than 0.1 per thousand. Compared with previously published headspace equilibration methods, the major improvement presented here is the development of a calibration procedure which takes the carbon isotope fractionation associated with the CO(2(g))-CO(2(aq)) partition into account: the set of standard solutions and samples has to be prepared and analyzed with the same 'gas/liquid' and 'H(3)PO(4)/water' volume ratios. A set of natural water samples (lake, river and hydrothermal springs) was analyzed to demonstrate the utility of this new method.  相似文献   

8.
A simple and effective method for the conversion of organic carbon into carbon dioxide for analysis of stable carbon isotopes (delta(13)C) in samples of various organic substances, soils, sedimentary rocks, oils and volatile organic liquids is presented. The conversion of organic carbon of the samples is carried out in a quartz reactor connected to a vacuum line for CO(2) freezing and purification. A solid organic sample mixed with CuO is placed at the reactor bottom and the reactor is subsequently filled with granular CuO. One end of the CuO column is preheated to 850 degrees C while the other end of the column in contact with the sample is kept at ambient temperature. Heating of the sample (850 degrees C) and the remainder of the column is then performed. The preheated part of the column provides efficient conversion of carbon into CO(2). The reactor for the conversion of volatile liquid organic compounds is filled with granular CuO. The column of CuO is heated to 850 degrees C. Samples of volatile liquids are introduced into the reactor through a septum using a microsyringe. Complete conversion takes 10 min for solid samples and 3 min for volatile liquids. The precision of the delta(13)C analysis for solid and volatile liquid organic substances is +/-0.1 per thousand and +/-0.04 per thousand, respectively.  相似文献   

9.
A commercial interface coupling liquid chromatography (LC) to a continuous‐flow isotope ratio mass spectrometry (CF‐IRMS) instrument was used to determine the δ13C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on‐line injection of small volumes of water samples, an oxidation reaction to produce CO2 and gas transfer to the isotope ratio mass spectrometer. In flow injection analysis (FIA) mode, bulk DOC δ13C analysis was performed on aqueous samples of up to 100 μL in volume in the range of DOC concentration in fresh waters (1–10 mg C.L–1). Mapping the DOC δ13C spatial distribution at the plot scale was made possible by this fairly quick method (10 min for triplicate analyses) with little sample manipulation. The relative contributions of different plot sectors to the DOC pool in the stream draining the plot were tentatively inferred on the basis of δ13C differences between the hydrophilic and hydrophobic components. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Molecular and intramolecular carbon isotope measurements of acetic acid present in natural environments have been performed by off-line procedures. The off-line method is complicated and time-consuming and requires micromolar to millimolar amounts of sample. This limits geochemical isotopic studies, especially at the intramolecular level, on acetic acid present in natural samples. Here, we examine an on-line measurement of intramolecular carbon isotope distribution of acetic acid using continuous-flow isotope ratio mass spectrometry (CF-IRMS) coupled with an on-line pyrolysis system. This is achieved by measurement of the respective carbon isotope ratios of CH4 and CO2 produced by on-line pyrolysis of acetic acid. Results for authentic standards of pure acetic acid demonstrated the practicality of this on-line method, although the carbon isotope ratio of the methyl group could not be determined directly. The precision of the carbon isotope measurements was 0.4 per thousand (1sigma). The carbon isotope distribution determined by the on-line method was identical to that determined by the conventional off-line method within analytical error. The advantages of the on-line method compared with the conventional off-line method are that it is less laborious, requires less analytical time (less than one hour per sample) and, most importantly, uses smaller sample sizes (ca. 10 nanomole). An application of this on-line method to natural geochemical samples will provide an insight into the geochemical cycle of acetic acid.  相似文献   

11.
New methods have been developed and applied successfully for the determination of dissolved inorganic, organic and total carbon in water samples. The new methods utilize two instrumental setups, Reagent-Free™ Ion Chromatography (RF™-IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Dissolved inorganic carbon (DIC) was measured in untreated samples along with Cl, F and SO42− using RF™-IC and by in-line mixing with 0.1 M HNO3 to enhance CO2 removal in the nebulizer, followed by ICP-AES analysis. Total dissolved carbon (TDC) was measured by in-line mixing with 0.1 M NaOH following ICP-AES analysis. Dissolved organic carbon (DOC) was obtained as the difference between DIC and TDC. Only non-volatile organic carbon could be detected by the present method. The workable limits of detection obtained in the present study were 0.5 mM (RF™-IC) and 0.1 mM (ICP-AES) for dissolved inorganic and organic carbon, respectively. The power of the new methods lies in routine analysis of DIC and DOC in samples of natural waters of variable composition and salinity using analytical techniques and facilities available in most laboratories doing water sample analysis. The techniques are sensitive and precise, can be automated using gas-tight sample vials and auto-samplers, and are independent of most elemental interferences with the exception of chloride overload by saline samples when using RF™-IC. The new methods were successfully applied for analysis of DIC and DOC in selected samples of natural and synthetic waters.  相似文献   

12.
We report results obtained using a new technique developed to measure the stable-isotope composition of uric acid isolated from bird excreta (guano). Results from a diet-switch feeding trial using zebra finches suggest that the delta(13)C of uric acid in the guano equilibrates with the diet of the bird within 3 days of a change in diet, while the equilibration time for delta(15)N may be longer. The average carbon isotope discrimination between uric acid and food before the diet switch was +0.34 +/- 1 per thousand (1sigma) while after the diet switch this increased slightly to +0.83 +/- 0.7 per thousand (1sigma). Nitrogen isotope discrimination was +1.3 +/- 0.3 per thousand (1sigma) and +0.3 +/- 0.3 per thousand (1sigma) before and after the diet switch; however, it is possible that the nitrogen isotope values did not fully equilibrate with diet switch over the course of the experiment. Analyses of other chemical fractions of the guano (organic residue after uric acid extraction and non-uric acid organics solubilised during extraction) suggest a total range of up to 3 per thousand for both delta(13)C and delta(15)N values in individual components of a single bulk guano sample. The analysis of natural samples from a range of terrestrial and marine species demonstrates that the technique yields isotopic compositions consistent with the known diets of the birds. The results from natural samples further demonstrate that multiple samples from the same species collected from the same location yield similar results, while different species from the same location exhibit a range of isotopic compositions indicative of different dietary preferences. Given that many samples of guano can be rapidly collected without any requirement to capture specimens for invasive sampling, the stable-isotope analysis of uric acid offers a new, simple and potentially powerful tool for studying avian ecology and metabolism.  相似文献   

13.
Degradation experiments of benzoate by Pseudomonas putida resulted in enzymatic carbon isotope fractionations. However, isotopic temperature effects between experiments at 20 and 30 degrees C were minor. Averages of the last three values of the CO(2) isotopic composition (delta(13)C(CO2(g))) were more negative than the initial benzoate delta(13)C value (-26.2 per thousand Vienna Pee Dee Belenite (VPDB)) by 3.8, 3.4 and 3.2 per thousand at 20, 25 and 30 degrees C, respectively. Although the maximum isotopic temperature difference found was only 0.6 per thousand, more extreme temperature variations may cause larger isotope effects. In order to understand the isotope effects on the total inorganic carbon (TIC), a better measure is to calculate the proportions of the inorganic carbon species (CO(2)(g), CO(2)(aq) and HCO(3)(-)) and to determine their cumulative delta(13)C(TIC). In all three experiments delta(13)C(TIC) was more positive than the initial isotopic composition of the benzoate at a pH of 7. This suggests an uptake of (12)C in the biomass in order to match the carbon balance of these closed system experiments.  相似文献   

14.
This study investigated the effect of substituting grass silage (C3 photosynthetic plant product) with maize silage (C4 photosynthetic plant product) on the natural abundance carbon (delta13C) and nitrogen (delta15N) stable isotope composition of bovine muscle tissue. Forty-five continental crossbred heifers were assigned to one of three diets consisting of 3 kg of a barley-based concentrate plus grass silage, maize silage or an equal mixture (dry matter basis) of grass silage and maize silage, fed ad libitum, for 167 days. Substitution resulted in less negative delta13C values (P<0.001) in lipid-free muscle and in lipid, and also a lower delta15N (P<0.001) in lipid-free muscle. Feeding of maize silage was clearly reflected in the delta13C of muscle, with each 10% difference in the dietary C4 carbon intake resulting in a 0.9 to 1.0 per thousand shift of delta13C in lipid-free muscle and a 1.0 to 1.2 per thousand in lipid. Minimum detectable mean differences (95% confidence, power 0.80, n=15) in this experiment were about 0.5 per thousand and 1.0 per thousand for delta13C of lipid-free muscle and lipid, respectively, and about 0.5 per thousand for delta15N of lipid-free muscle. The power analysis presented here is useful for estimating minimum isotopic differences that can be detected between any two groups of beef samples with a given number of replicates. It is concluded that carbon stable isotope ratio analysis of meat can be used to quantify C3/C4 dietary constituents in beef production.  相似文献   

15.
Stable carbon isotopes are a powerful tool to assess the origin and dynamics of carbon in soils. However, direct analysis of the 13C/12C ratio in the dissolved organic carbon (DOC) pool has proved to be difficult. Recently, several systems have been developed to measure isotope ratios in DOC by coupling a total organic carbon (TOC) analyzer with an isotope ratio mass spectrometer. However these systems were designed for the analysis of fresh and marine water and no results for soil solutions or 13C‐enriched samples have been reported. Because we mainly deal with soil solutions in which the difficult to oxidize humic and fulvic acids are the predominant carbon‐containing components, we preferred to use thermal catalytic oxidation to convert DOC into CO2. We therefore coupled a high‐temperature combustion TOC analyzer with an isotope ratio mass spectrometer, by trapping and focusing the CO2 cryogenically between the instruments. The analytical performance was tested by measuring solutions of compounds varying in the ease with which they can be oxidized. Samples with DOC concentrations between 1 and 100 mg C/L could be analyzed with good precision (standard deviation (SD) ≤0.6‰), acceptable accuracy, good linearity (overall SD = 1‰) and without significant memory effects. In a 13C‐tracer experiment, we observed that mixing plant residues with soil caused a release of plant‐derived DOC, which was degraded or sorbed during incubation. Based on these results, we are confident that this approach can become a relatively simple alternative method for the measurement of the 13C/12C ratio of DOC in soil solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Stable isotope analyses are widely used to determine trophic levels in ecological studies. We have investigated the effects of carbonate removal via acidification on the stable carbon and nitrogen isotopic composition of 33 species of tropical benthic macrofauna, and we report guidelines for standardizing this procedure for higher taxa in tropical coral reef ecosystems. Many tropical benthic invertebrates are small in size, and therefore body tissue isolation (separating organic carbon from inorganic structures) is difficult and time-consuming. Literature reviews of invertebrate studies show a lack of consistent procedures and guidelines for preparation techniques, especially for carbonate removal via acidification of whole individuals. We find that acidification decreases the delta(13)C values of samples containing carbonate, with shifts ranging from 0.21 to 3.20 per thousand, which can be related to CaCO(3) content (assessed by a carbonate proxy), justifying acid pre-treatment. Carbonate-containing taxa benefiting from acidification included Amphinomida, Terebellida (Annelida), Anomura, Brachyura, Caridea, Amphipoda, Tanaidacea (Arthropoda) and Edwardsiida (Cnidaria). The delta(13)C shifts of samples containing no carbonate varied up to 0.02 +/- 0.20 per thousand. As this induced delta(13)C shift was lower than the range of an average trophic level shift (0.5 to 1 per thousand), we conclude that acid pre-treatment is unnecessary. Carbonate-free taxa consisted of Eunicida, Phyllodocida (Annelida) and Mollusca. We note minimal impact of acidification on delta(15)N values except for Brachyura, which showed a shift of 0.83 +/- 0.46 per thousand, which is still lower than a single trophic level shift (2.9-3.8 per thousand). We conclude that for trophic level studies, both the delta(13)C and the delta(15)N of carbonate-rich macrofauna can be determined from the same acidified sample. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A new application for the quantitative and isotopic analyses of dissolved inorganic and dissolved organic carbon compounds has been developed. Dissolved organic matter (DOM) in natural water samples can be separated on a high-performance liquid chromatography (HPLC) column and collected as fractions. Each discrete fraction can then be analyzed using the technique of St-Jean (Rapid Commun. Mass Spectrom. 2003; 17: 419-428) with a total inorganic carbon/total organic carbon (TIC/TOC) analyzer interfaced with a continuous-flow isotope ratio mass spectrometer. Experimental data using short-chain fatty acid standards (formic, acetic, and propionic acids) show that fraction recoveries of 100% are possible and that sample integrity is maintained. 13C-isotopic analyses of products prior to and subsequent to extraction and collection show no isotopic effects associated with the methodology, and errors are well within the accepted analytical uncertainty of the IRMS. Comparison of data from pure standards and organic-rich natural waters shows that quantitative analyses still need to be done with standards that more closely imitate the matrices of the samples, in order to acquire an appropriate calibration curve. Injections of organic-rich matrices on the HPLC column did not affect fraction recovery, nor did they create high background of partially retained organic compounds slowly released from the HPLC column, and hence 13C-isotopic results are relatively unaffected. The specific limitation on this methodology is the required use of carbon-free carrier solvents due to potential memory effects associated with the TIC/TOC analyzer. Further developments of this application could make routine compound-specific isotopic analyses (CSIA) for a wider range of organic materials possible.  相似文献   

18.
The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.  相似文献   

19.
Black carbon (BC) is a complex continuum of partly charred organic matter predominantly consisting of condensed aromatic and graphitic moieties and it has high potential for long-term carbon sequestration in soils and sediments. There has been common agreement that BC is exclusively formed by incomplete combustion of organic matter, while non-pyrogenic sources are negligible. In this study, we investigated the stable carbon isotope signature of benzenepolycarboxylic acids (BPCAs) as molecular markers for BC to test if there is also a significant contribution of non-pyrogenic carbon to this fraction in soils. BPCAs were formed by hot nitric acid oxidation of different soils and analyzed by three different procedures: (i) elemental analysis - isotope ratio mass spectrometry (EA-IRMS) of bulk BPCAs and gas chromatography - combustion - isotope ratio mass spectrometry (GC-C-IRMS) of (ii) BPCA trimethylsilyl (TMS) derivatives, and (iii) BPCA methyl derivatives. Best accuracy and precision of isotope measurements were obtained by EA-IRMS of bulk BPCAs although this method has a risk of contamination by non-BC-derived compounds. The accuracy and precision of GC-C-IRMS measurements were superior for methyl derivatives (+/-0.1 per thousand and 0.5 per thousand, respectively) to those for TMS derivatives (+3.5 per thousand and 2.2 per thousand, respectively).Comparison of BPCA delta(13)C values of soil samples prior to and after laboratory and field incubations with both positive and negative (13)C labels at natural and artificial abundances revealed that up to 25% of the isolated BC fraction in soils had been produced in situ, without fire or charring. Commonly applied methods to quantify BC exclusively formed by pyrogenic processes may thus be biased by a significant non-pyrogenic fraction. Further research is encouraged to better define isolated BC fractions and/or understand mechanisms for non-pyrogenic BC production in soils.  相似文献   

20.
We have developed an automated, continuous-flow isotope ratio mass spectrometry (CF-IRMS) system for the analysis of delta(13)C, delta(18)O, and CO(2) concentration (micromol mol(-1)) ([CO(2)]) from 2 mL of atmospheric air. Two replicate 1 mL aliquots of atmospheric air are sequentially sampled from fifteen 100 mL flasks. The atmospheric sample is inserted into a helium stream and sent through a gas chromatograph for separation of the gases and subsequent IRMS analysis. Two delta(13)C and delta(18)O standards and five [CO(2)] standards are run with each set of fifteen samples. We obtained a precision of 0.06 per thousand, 0.11 per thousand, and 0.48 micromol mol(-1) for delta(13)C, delta(18)O, and [CO(2)], respectively, by analyzing fifty 100 mL samples filled from five cylinders with a [CO(2)] range of 275 micromol mol(-1). Accuracy was determined by comparison with established methods (dual-inlet IRMS, and nondispersive infrared gas analysis) and found to have a mean offset of 0.00 per thousand, -0.09 per thousand, and -0.26 micromol mol(-1) for delta(13)C and delta(18)O, and [CO(2)], respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号