共查询到20条相似文献,搜索用时 12 毫秒
1.
M.V. Nazarov D.Y. Jeon E.-J. Popovici M.V. Zamoryanskaya 《Solid State Communications》2004,131(5):307-311
Double incorporation of Eu3+ and Tb3+ ions into a CaWO4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed.This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices. 相似文献
2.
Hojin Ryu 《Physica B: Condensed Matter》2008,403(18):3195-3198
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence. 相似文献
3.
Qiyue Shao 《Journal of luminescence》2009,129(8):879-475
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips. 相似文献
4.
Phosphor material BaAl2O4:Eu2+, Dy3+ with varying compositions of Sr substitution were prepared by the solid-state synthesis method. The phosphor compositions were characterized for their phase and crystallinity by XRD, SEM and TEM. Photoluminescence (PL) properties were investigated measuring PL and decay time for varying Ba/Sr compositions. The PL results show the blue shift in the luminescence properties in Sr substituted BaAl2O4:Eu2+, Dy3+ compared to parent BaAl2O4:Eu2+, Dy3+. It is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects. Dy3+ ion doping in the phosphor generates deep traps, which results in long afterglow phosphorescence. 相似文献
5.
Qiaoli Wu 《Physica B: Condensed Matter》2009,404(16):2499-2502
Stabled hexagonal phase Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl2O4:Eu2+ calcined at 1350 °C in a reducing atmosphere for 5 h strongly depended on the Ba2+ concentration. With increasing Ba2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu2+ changed with increasing content of Ba2+. The strongest green emission was obtained from Sr0.61Ba0.37Al2O4:Eu2+. The decay characteristics of Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice. 相似文献
6.
Nanosized ZnGa2O4:Cr3+ powder is synthesized through hydrothermal method. The average particle size is 20 nm and they are spherical in shape. The excitation band from the charge transfer between Cr3+-O2− shows a blueshift behavior due to quantum confinement effect. X-ray diffraction pattern, Fourier transform-infrared spectrum, and electron paramagnetic resonance signal indicate that nanosized ZnGa2O4:Cr3+ phosphor shows many defect-related energy states and heavy lattice distortion in comparison with bulk ZnGa2O4:Cr3+ phosphor. Many defect states result in more nonradiative loss and shorter decay time. 相似文献
7.
ZnO nanocrystals capped with an organic dye Rhodamine 6G (Rh6G) were investigated by photoluminescence (PL) and cathodoluminescence (CL) techniques. PL and CL spectra showed a remarkable decrease in visible emission intensity after ZnO nanocrystals were capped with Rh6G, indicating that dangling bonds and defect states existing at the surface of ZnO nanocrystals were significantly passivated. Rh6G on the ZnO surface exhibited a monomer-like emission, and the intensity and the position of the emission were dependent on the dye concentration. 相似文献
8.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position. 相似文献
9.
We have synthesized blue-emitting CaMgSi2O6:Eu2+ (CMS) and evaluated its thermal stability after baking process. To evaluate its thermal stability, CMS was baked in air at 500 and 600 °C for 20 min, respectively, and compared with BaMgAl10O17:Eu2+ (BAM) treated in the same condition. After baking process, CMS showed somewhat increased photoluminescence (PL) intensity with baking temperature. To investigate the reasons behind the increase of PL intensity after baking process, vacuum ultraviolet (VUV)/PL, electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS) techniques were applied. From the ESR and the XPS analyses, it is noted that spectral intensity of Eu2+ ion somewhat increased. It was believed that due to charge balance Eu3+ ions reduced to Eu2+ ions during the baking process in air. It is clear that the concentration of Eu2+ increased after the baking process in air and it leads to slight increase of the VUV/PL intensity of CMS phosphor. 相似文献
10.
Luminescent properties of Pr3+ or Mn2+ singly doped and Pr3+, Mn2+ co-doped LaMgB5O10 are investigated by synchrotron radiation VUV light. When LaMgB5O10:Pr3+ is excited at185 nm, the photon cascade emission between 4f levels of Pr3+ is observed. In the excitation spectra of LaMgB5O10:Mn2+ monitoring the 615 nm emission of Mn2+, several excitation bands in a spectral range from 330 to 580 nm are recorded, among which the most intense band is centered at 412 nm (6A1g→4Eg-4A1g). This band has considerable spectra overlap with the 410 nm emission (1S0→1I6) of Pr3+, which is favorable for energy transfer from Pr3+ to Mn2+. Such energy transfer is observed in the co-doped sample, converting the violet emission (410 nm) of Pr3+ into the red emission (615 nm) of Mn2+. The concentration dependence of transfer efficiency is also investigated. 相似文献
11.
Nb2O5 nanorods have been prepared using water/ethanol media. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption and photoluminescence spectroscopy. The as-prepared Nb2O5 nanorods appeared to be single pseudohexagonal (TT-Nb2O5) phase. From the photoluminescence spectrum, two emission bands at 407 and 496 nm, respectively, were observed. The origin of the luminescence was discussed in detail. 相似文献
12.
A novel and simple synthesis route for the production of ZnS:Cu,Al sub-micron phosphor powder is reported. Both the host and activator cations were co-precipitated from an ethanol medium by mixing with a diluted ammonium sulfide solution. The co-precipitated ZnS:Cu,Al was in cubic zinc blende structure after an intermediate-temperature furnace annealing. Strong photoluminescent and cathodoluminescent (CL) emission were observed, which was attributed to the 3d10-3d94s1 radiative transition at those copper sites. At an accelerating voltage of 1 kV, the CL intensity of the co-precipitated ZnS:Cu,Al sample was recorded 94% of the commercial reference phosphor with the same composition made by high temperature solid-state-reaction method. The particle size of the co-precipitated phosphor powders was found to be controllable simply through adjusting the reactant concentrations. The particle size of the annealed samples was measured by dynamic light scattering, which showed a mean particle diameter between 200 and 700 nm depending on the co-precipitation conditions. 相似文献
13.
Crystal fibers of Ce3+ and Tb3+ singly doped and co-doped CaAl4O7 were grown by the LHPG method. Photoluminescence, excitation spectra and photoconduction were measured. Thermo-stimulated photo-ionization (delocalization) of electrons from the lowest field component of the 5d excited state of Ce3+ was observed in the Ce3+ singly doped sample under excitation at 355 nm. The 5d sublevel was found to locate at 0.3 eV below the conduction band of the host. However, the thermo-stimulated photo-ionization was greatly quenched due to the fast energy transfer from the 5d sublevel to Tb3+ ions in the Ce3+/Tb3+ double doped sample. 相似文献
14.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/2→6H15/2 (482 nm) and 4F7/2→6H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D2→3H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces. 相似文献
15.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D2→3H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property. 相似文献
16.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D0→7F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications. 相似文献
17.
Qing Yang Sotaro Izumi Atsushi Tackeuchi Hirokazu Tatsuoka 《Applied Surface Science》2010,256(22):6928-6931
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4. 相似文献
18.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature. 相似文献
19.
Marcin Sobczyk 《Journal of luminescence》2009,129(5):430-418
In an attempt to find a neodymium-vanadate system with long lifetime of 4F3/2 level and relatively strong 4F3/2→4I11/2 emission for laser applications, the optical properties of Nd3+ in a new KZnLa(VO4)2 host is reported. The crystalline samples were obtained at 900 °C in air. The samples were crystallized in monoclinic system and were isostructural with KZnLa(PO4)2. KZnLa0.99Nd0.01(VO4)2 strongly emits in the near infrared range with the maxima at 871.6 and 1057 nm upon excitation through the 4F5/2 level (808 nm) or by the charge transfer bands of VO43−. The lifetime of 4F3/2 level of Nd3+ ion is larger than that observed in other neodymium-vanadates systems. 相似文献
20.
The thermoluminescent (TL) and X-ray luminescent (XL) spectra of undoped LiKB4O7 (LKBO) single crystals had been investigated in the temperature range 80-300 K. It was found that in LKBO crystals, there are two intensive TL peaks at 112 and 132 K. The only one band emission spectra of sharply defined Gaussian shape, confirming the same mechanism of XL and TL by the radiation annihilation of the strongly localized self-trapped excitons (STE), had been observed in the TL and XL spectra. The possible models of these localization centers STE have been discussed. 相似文献