首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
A fully integrated ΔΣ fractional-N frequency synthesizer fabricated in a 55 nm CMOS technology is presented for the application of IEEE 802.11b/g wireless local area network(WLAN) transceivers.A low noise filter,occupying a small die area,whose power supply is given by a high PSRR and low noise LDO regulator,is integrated on chip.The proposed synthesizer needs no off-chip components and occupies an area of 0.72 mm2 excluding PAD.Measurement results show that in all channels,the phase noise of the synthesizer achieves -99 dBc/Hz and -119 dBc/Hz in band and out of band respectively with a reference frequency of 40 MHz and a loop bandwidth of 200 kHz.The integrated RMS phase error is no more than 0.6°.The proposed synthesizer consumes a total power of 15.6 mW.  相似文献   

2.
A fractional-N frequency synthesizer fabricated in a 0.13 μm CMOS technology is presented for the application of IEEE 802.11 b/g wireless local area network (WLAN) transceivers.A monolithic LC voltage controlled oscillator (VCO) is implemented with an on-chip symmetric inductor.The fractional-N frequency divider consists of a pulse swallow frequency divider and a 3rd-order multistage noise shaping (MASH) △ ∑ modulator with noise-shaped dithering techniques.Measurement results show that in all channels,phase noise of the synthesizer achieves -93 dBc/Hz and -118 dBc/Hz in band and out of band respectively with a phase-frequency detector (PFD) frequency of 20 MHz and a loop bandwidth of 100 kHz.The integrated RMS phase error is no more than 0.8°.The proposed synthesizer consumes 8.4 mW from a 1.2 V supply and occupies an area of 0.86 mm2.  相似文献   

3.
This paper proposes a sigma-delta fractional-N frequency synthesizer-based multi-standard I/Q carrier generation system.With reasonable frequency planning,the system can be used in multi-standard wireless communication applications(GSM,WCDMA,GPRS,TD-SCDMA,WLAN(802.11a/b/g)).The implementation is achieved by a 0.13μm RF CMOS process.The measured results demonstrate that three quadrature VCOs(QVCO) continuously cover the frequency from 3.1 to 6.1 GHz(65.2%),and through the successive divide-by-2 prescalers to achieve the frequency from 0.75 to 6.1 GHz continuously.The chip was fully integrated with the exception of an off-chip filter.The entire chip area is only 3.78 mm~2,and the system consumes a 21.7 mA@1.2 V supply without output buffers.The lock-in time of the PLL frequency synthesizer is less than 4μs over the entire frequency range with a direct frequency presetting technique and the auxiliary non-volatile memory(NVM)can store the digital configuration signal of the system,including presetting signals to avoid the calibration process case by case.  相似文献   

4.
A 900 MHz fractional-N synthesizer is designed for the UHF transceiver. The VCO with a 4 bits capacitor bank covers 823–1061 MHz that implements 16(24)sub-bands. A 7/8 dual-modulus prescaler is implemented with a phase-switching circuit and high-speed flip–flops, which are composed of source coupled logic. The proposed synthesizer phase-locked loop is demonstrated with a 50 k Hz band width by a low 12.95 MHz reference clock, and offers a better phase noise and band width tradeoff. To reduce the out-band phase noise, a 4-levels 3-order single-loop sigma–delta modulator is applied. When its relative frequency resolution is settled to 10-6, the testing results show that the phase noises are –120.6 d Bc/Hz at 1 MHz and –95.0 d Bc/Hz at 100 k Hz. The chip is2.1 mm2 in UMC 0.18μm CMOS. The power is 36 m W at a 1.8 V supply.  相似文献   

5.
With the rapid evolution of wireless communication technology,integrating various communication modes in a mobile terminal has become the popular trend.Because of this,multi-standard wireless technology is one of the hot spots in current research.This paper presents a wideband fractional-N frequency divider of the multi-standard wireless transceiver for many applications.High-speed divider-by-2 with traditional sourcecoupled-logic is designed for very wide band usage.Phase switching technique and a chain of divider-by-2/3 are applied to the programmable frequency divider with 0.5 step.The phase noise of the whole frequency synthesizer will be decreased by the narrower step of programmable frequency divider.△-Σ modulator is achieved by an improved MASH 1-1-1 structure.This structure has excellent performance in many ways,such as noise,spur and input dynamic range.Fabricated in TSMC 0.18 μm CMOS process,the fractional-N frequency divider occupies a chip area of 1130 × 510μm2 and it can correctly divide within the frequency range of 0.8-9 GHz.With 1.8 V supply voltage,its division ratio ranges from 62.5 to 254 and the total current consumption is 29 mA.  相似文献   

6.
This paper presents an LC voltage controlled oscillator(VCO) in a dual-band frequency synthesizer for IMT-advanced and UWB applications.The switched current source,cross-coupled pair and noise filtering technique are adopted in this VCO design to improve the performance of the phase noise,power consumption,voltage amplitude,and tuning range.In order to achieve a wide tuning range,a reconfigurable LC tank with 4 bits switch control is adopted in the core circuit design.The size of the entire chip with pad is 1.11 0.98 mm2.The test results show that the current dissipation of the VCO at UWB and IMT-Advanced band is 3 mA and 4.5 mA in a 1.2 V supply.The tuning range of the designed VCO is 3.86-5.28 GHz and 3.14-3.88 GHz.The phase-noise at 1 MHz frequency offset from a 3.5 GHz and 4.2 GHz carrier is-123 dBc/Hz and-119 dBc/Hz,respectively.  相似文献   

7.
A differential complementary LC voltage controlled oscillator(VCO) with high Q on-chip inductor is presented.The parallel resonator of the VCO consists of inversion-mode MOS(I-MOS) capacitors and an on-chip inductor.The resonator Q factor is mainly limited by the on-chip inductor.It is optimized by designing a single turn inductor that has a simulated Q factor of about 35 at 6 GHz.The proposed VCO is implemented in the SMIC 0.13μm 1P8M MMRF CMOS process,and the chip area is 1.0×0.8 mm~2.The free-running frequency is from 5.73 to 6.35 GHz.When oscillating at 6.35 GHz,the current consumption is 2.55 mA from a supply voltage of 1.0 V and the measured phase noise at 1 MHz offset is -120.14 dBc/Hz.The figure of merit of the proposed VCO is -192.13 dBc/Hz.  相似文献   

8.
楚晓杰  贾海珑  林敏  石寅  代伐 《半导体学报》2011,32(10):105006-7
本文提出一种应用于IEEE 802.11b/g 无线局域网收发机的ΔΣ 分数型频率综合器。该设计采用了0.13 μm CMOS 工艺。LC型的压控振荡器采用了片上集成的差分电感。分数分频器由吞脉冲式分频器和带噪声整形技术的3阶MASH类型的ΔΣ调制器构成。测试结果表明,参考频率为20 MHz环路带宽为100 kHz的情况下,该设计所有信道的相位噪声性能均可达到带内-93 dBc/Hz,带外-118 dBc/Hz。积分均方相位误差小于0.8。整个设计在1.2V电源条件下消耗8.4 mW的功耗,占用0.86 mm2的面积。  相似文献   

9.
彭苗  林敏  石寅  代伐 《半导体学报》2011,32(12):101-106
A 2.4 GHz radio frequency receiver front end with an on-chip transformer compliant with IEEE 802.11b/g standards is presented.Based on zero-IF receiver architecture,the front end comprises a variable gain common-source low noise amplifier with an on-chip transformer as its load and a high linear quadrature folded Gilbert mixer.As the load of the LNA,the on-chip transformer is optimized for lowest resistive loss and highest power gain.The whole front end draws 21 mA from 1.2 V supply,and the measured results show a double side band noise figure of 3.75 dB,-31 dBm IIP3 with 44 dB conversion gain at maximum gain setting.Implemented in 0.13μm CMOS technology,it occupies a 0.612 mm~2 die size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号